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Abstract
Advanced pressurized water reactors are the main part of a new generation of nuclear power plant projects under 
development that provide cost-effective power production for various needs (Yemelyanov et al. 1982, Klimov 2002, 
Boyko et al. 2005, Baklushin 2011, Bays et al. 2019, Nuclear Technology Review 2019). The innovative technologies 
are aimed at improving the safety and reliability as well as at reducing the cost of NPPs. At the same time, improve-
ments in design, technological and layout solutions are focused primarily on the reactor core. Assessments of the 
efficiency of these improvements are preceded by numerical simulations of the processes in the core, in particular 
heat generation and sink, with account for the difference between the study object and the standard version tested in 
operational practice.

The authors of the article propose a method for calculating the temperature field in the core of a heterogeneous reactor 
(using the example of a pressurized water reactor), which makes it possible to quickly assess the level of temperature 
safety of various changes in the core and has the necessary speed for analyzing transients in real time.

This method is based on the energy equation for an equivalent homogeneous core in the form of a heat equation that 
takes into account the main features of the simulated heterogeneous structure. The procedure for recovering the tem-
perature field of a heterogeneous reactor uses the analytical relation obtained in this work for the heat sink function, 
taking into account inter-fuel element heat leakage losses.

Calculations of temperature fields in the model of the PWR type reactor (The Westinghouse Pressurized Water Re-
actor Nuclear Plant 1984) were carried out in stationary and transient operating modes. The calculation results were 
compared with the results of CFD simulation. The area of competing use of the temperature field recovery method 
was indicated.
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Introduction
Attention to pressurized water reactors is explained not 
only by their prevalence as an energy source in various 
types of nuclear power plants (NPPs), both stationary and 
transportable (including space ones), but also by the con-
stant improvement of existing design, technological and 
layout solutions, primarily related to reactor core. The ob-
vious unfeasibility of most full-scale tests aimed at confir-
ming the improvement effect has led to the development 
of simulation bench tests of core element models. Howe-
ver, the experimental study, in any case, is preceded by 
numerical simulation.

All computing codes of heterogeneous cores are com-
plicated, requiring significant computing power and im-
posing individual restrictions on the area of use. Another 
thing is a homogeneous core, which, moreover, is presen-
ted as a continuous medium. For such an core, the energy 
equation can be written in the form of the heat conduction 
equation (Kuzevanov et al. 2017, Kuzevanov and Podgor-
ny 2019a, b). The numerical solution of this equation can 
be arranged as an efficient procedure with a small compu-
tation time at the computing power available to any user.

In this work, the task is to build an algorithm for re-
covering the temperature field in a heterogeneous core in 
stationary and transient processes based on the results of 
calculating the temperature in an equivalent homogene-
ous core of a nuclear reactor.

Core model

For definiteness and concretization of the relations obtained 
below, let us consider the core of a PWR type reactor (The 
Westinghouse Pressurized Water Reactor Nuclear Plant 
1984) loaded with fuel assemblies that are square in cross 
section. The fuel elements are located in the fuel assem-
blies at the nodes of a square lattice with a step a1. The fuel 
assemblies have no jackets. The geometric parameters and 
composition of the fuel elements are presented in Table 1.

Main model assumptions and 
definitions

 - The pressure of the coolant at the core inlet Pin, its 
temperature Tin

2 and its mass flow rate G are known; 
the coolant pressure at the core outlet Pout is the 
same for all the fuel assemblies.

 - The coolant exchange between neighboring fuel 
assemblies occurs on an equal-mass basis. The mass 
flow rate of the coolant in any fuel assembly does 
not change along its height z.

 - Let us define a virtual channel as an elementary FA 
channel, in the center of the square cross-section 
(with side a1) of which there is a single fuel element 
with an outer cladding diameter dsh.

 - Volumetric heat releases qv in each of the fuel el-
ements and mass flow rates of the coolant in the 
elementary channels of any fuel assembly are the 
same. The lateral boundaries of the channels are 
permeable. The connection of hydraulic losses with 
the mass flow rate of the coolant in any fuel assem-
bly or elementary channel can be represented by the 
Darcy-Weisbach equation.

Details about the core represented 
in the temperature field calculation

 - In the calculations of changes in the temperature 
field T in time τ, the core as a whole is represent-
ed as a continuous medium. At the same time, in 
the numerical calculation, the elementary volume 
coincides with the elementary channel as its part 
with the size Δz along the axial coordinate z. The 
parameters of the continuous medium are weighted 
average. Each calculated volume has heat sources 
and sinks.

 - In the analysis of coolant temperature changes and 
determination of the sink term power, the core is 
considered as heterogeneous, composed of elemen-
tary channels, including discrete components “i”. 
As components of the heterogeneous calculated 
volume, we consider the coolant (water, any coolant 
parameter index is “2”), fuel rod cladding (metal, 
the parameter index is “sh”), gas gap between the 
cladding and fuel in the fuel rod (gas, the parameter 
index is “g”), and fuel (uranium dioxide, the param-
eter index is “f”).

 - A single elementary channel is a model of the cor-
responding fuel assembly in the analysis of the tem-
perature field of the reactor core.

 - Heat and mass transfer between neighboring equiv-
alent channels is described in the quasi-stationary 
approximation.

Homogeneous core. Energy 
conservation equation

The core is described as a continuous medium with weigh-
ted average temperatures in the calculated cells. The heat 
conduction equation in the form (Kuzevanov et al. 2017, 
Kuzevanov and Podgorny 2019a, b) is used as the energy 
conservation equation:

Table 1. Geometrical parameters and composition of the 
fuel elements

FE 
component

Dimensions Material 
Diameter, 

mm
Thickness, 

mm
Length, 

mm
Cladding 9.14 –

3658
Zircaloy 4

Gas gap – 0.157 Helium 
Fuel rod 7.844 – Uranium dioxide 
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�
T
�

div �e gradT qv qv st (1)

where Φ = Σεi; λef is the effective thermal conductivity 
of the simulated system W/(m∙°C); qv is the specific 
volumetric energy release, W/m3; qv.st is the heat sink 
function reflecting the heat removal from the fuel rod 
surface per unit volume, W/m3; weighted average 
temperature in the calculated cell of the calculated 
volume T = ΣTi∙ε

*
i, ε*

i = εi/Φ; εi = (ρ∙c∙φ)i, where ρ, c 
and φ are the are the density, specific heat capacity and 
volume fraction of the heterogeneous core component in 
the calculated volume, respectively.

Heterogeneous core. Heat sink 
function

The analysis showed that for the core of a pressurized water 
reactor, it is possible to use the relation for determining 
the heat removal from the surface of a fuel element in 
a non-stationary process, obtained in (Kuzevanov and 
Podgorny 2019) for the core of a high-temperature gas-
cooled reactor:

qv.st = σ{q0(z, r)f ~ + P~}, (2)

where σ = F/V; F is the heat exchange surface of a single 
fuel element, m2; V is the volume of the calculation cell, 
m3; q0 is the heat flux density per unit area of the fuel ele-
ment, W/m2 (index “0” is the stationary (initial) state); f~ 
is the a function of time, spatial coordinates (z, r) and dis-
turbing effects; P~ is the function reflecting the influence 
of boundary conditions.

One of the features of using relation (2) is the need to 
determine the true heating of the coolant in each elemen-
tary channel, taking into account thermal leakage between 
them, which is possible only if the design and hydrody-
namic features of the heterogeneous core are considered.

Heterogeneous core. Coolant 
heating calculation

With the adopted physical model of the core taken into ac-
count, the heat balance equation for the channel “j” of the 
core with square fuel assemblies in the stationary mode 
looks like this:

Gj�hj
� e

H � e dsh qj 1qn j dz dshH qn j 1H qn j  (3)

where Δhj = c2,jΔTj, h is the specific enthalpy of the cool-
ant, J/kg; 〈qn,j〉 is the average density of the heat flux from 
other fuel assemblies, W/m2; a1 is the cross-size of a cell 
containing one fuel element, m; H is the core height, m; 
ΔТ is the coolant heating in the channel, °C.

For an arbitrary cross section z of the channel j, we defi-
ne the heat flux density qn,j as qn = qn,j.1 – qn,j.2. Assume that 
the components of the heat flux qn,j.1 and qn,j.2 through the 
virtual side surface of the channel can be represented as:

qn j 1 λe j 1

T2 j 1 T2 j
2

, qn j 2 λe j

T2 j T2 j 1

2
 (4)

where λef is the effective heat transfer coefficient averaged 
over the channel height, taking into account the molecular 
and turbulent components of heat transfer, W/(m∙°C); а2 is 
the effective distance between adjacent fuel assemblies, m.

And now we shall determine the effective thermal con-
ductivity coefficient λef based on the following conside-
rations. Let us assume that the change in the intensity of 
heat transfer on the heating surface during the transition 
from the laminar flow regime to the turbulent one is di-
rectly related to the general change in the heat-conducting 
properties of the medium. Then we obtain:

αl = αt∙λ/λef, (5)

where α and λ are the are the coefficients of heat transfer 
and molecular thermal conductivity, respectively (the in-
dexes “l” and “t” refer to the laminar and turbulent cool-
ant flow regimes, respectively).

For the laminar regime on the stabilized section in the 
round pipe, the solution of the integral Lyon relation for 
a laminar fluid flow leads to the equality Nul = A = const.

Extending the relation Nul = A to channels of arbitrary 
shape with an equivalent diameter de, we obtain from (5) the 
following expression for the effective thermal conductivity:

λef = αt∙de/A. (6)

The transformation of equation (3) into a system of 
algebraic equations for the connection of flow, hydraulic 
and thermodynamic parameters of channels, convenient 
for analysis, was carried out using B. Petukhov’s formula 
for calculating Nut (Petukhov and Kirillov 1958). If we 
combine as identical (i.e. having the same heat load and 
coolant flow rate) fuel assemblies under the same channel 
group number “j”, designating the number of such groups 
as “m”, then, in the case of numbering from the center of 
the core, the transformed system of equations will be look 
like this:

Gjcp j�Tj 1 0 5C1�1 � 1 � 2Yj

vj
Qp
N n2

0 5Gjcp jC1�j � 2Yj�Tj 1 � 1�Tj 1 ; (7)

1 ≥ j ≥ m

Here ξ are friction resistance coefficients;

δ 1

0 if j m
1 if j m
2 if j 1

 δ 2
0 if j 1
1 if j 1

 (8)



Kuzevanov VS & Podgorny SK: Temperature field recovery of  a heterogeneous reactor 214

Yj = ξm–1Gm–1/ξmGm; С1 = (Hb*)/L; L = Aa*
2/a1 is the heat 

exchange constant between fuel assemblies; a*
2 = a2n; 

b* = Ct /2πd[K+ε(Pr)]; K and ε(Pr) are the temperature 
correction and the coefficients of Petukhov’s formula for 
Nut (Petukhov and Kirillov 1958); n2 is the number of 
fuel elements in a square fuel assembly; N is the number 
of fuel assemblies.

The system of equations (7) is supplemented by a sys-
tem of equations for the pressure drop in a group of iden-
tical fuel assemblies in the form of the Darcy-Weisbach 
equations (Kuzevanov and Podgorny 2018).

Specifying the definition of the 
stationary value q0

v.st

For the system of interconnected channels, it is proposed 
to determine q0

v.st as follows:

q0
v.st = k(T0 – T0

2), (9)

where for a square lattice of fuel elements arrangement:

k
1
2

Rl1
2

Rl2 �sh
* Rl1 Rl2

1
8�

� *
1
 (10)

Note that in relation (10) Rl1 and Rl2 are the linear ther-
mal resistance of the cladding (including the gas gap) and 
heat transfer, respectively.

Using expression (9) in the equation

div(λef grad T) + q0
v – k(T – T0

2) = 0 (11)

together with the system of equations (7) makes it easy to 
determine the stationary temperature distribution in the 
reactor core.

Time function fτ calculation

The dimensionless time function fτ is included in the rela-
tions for determining f~ and P~ (2) (Kuzevanov and Pod-
gorny 2019, 2019a). In the case of high thermal conduc-
tivity of a heterogeneous system (k/Φ >> 1) with known 
stationary fields T0(τ = 0), T∞(τ → ∞ after exposure to dis-
turbing factors), fτ = f*

τ = (T – T0)/(T∞– T0), which is confir-
med by calculations of the temperature fields of a gas-coo-
led reactor (Kuzevanov and Podgorny 2019, 2019a).

Analytical and computational studies conducted by the 
authors have shown the possibility of using the following 
dependencies when calculating the function fτ for cores of 
PWR reactors:

�
�
* if kT 1 kG 1

A1
1

�
* 1 A1

1 1 A1
1 � � exp A2� B if kT 1 and kG 1

 
(12)

The following notations are used here:
� � 1 � * �T2 � 2 �T �T2 T2 T2

0 �T T T0

B �T 1 1 � * � 2 �T A2 �Tsh � 2 k���0 �

�Tsh Tsh Tsh
0 � 2 �T2 kT

1
kG

T2
0 in 1

1
kG

T2
0

A1 1 � * � 2 A2�k
1 �T

 
(13)

ki is the ratio of the new stationary values of the disturbing 
parameters to the initial ones; T ′sh is the temperature of 
the outer surface of the fuel element cladding.

Temperature field recovery of a 
heterogeneous reactor

The results of calculating the weighted average tempera-
ture when the core is represented as an equivalent homo-
geneous medium formed the basis for the procedure for 
recovering the temperature field in the elements of any 
calculation cell, i.e., the coolant, cladding and fuel. In the 
coolant, the temperature field was not detailed; only its 
average temperature in the cross section of the elementary 
channel and the equality of coolant and cladding tempera-
tures on the outer surface of the fuel element were taken 
into account. It was assumed that the temperature profile 
in the fuel cladding remains logarithmic, while in the fuel 
it was described by a power function during the entire 
transient process. Within these model approximations, 
the procedure for recovering the temperature field in any 
calculated cell of the core looks quite simple.

Indeed, at the time τ after the start of the transient process 
in the core, caused by an abrupt change in any of the para-
meters or several parameters that affect the temperature dis-
tribution in the core, the following fields are directly known 
as a result of calculating the equivalent homogeneous core:

 - average temperatures Т2;
 - values of the heat sink function qv.st; and
 - weighted average temperature Т.

Neglecting the thermal inertia of the thin cladding, we 
additionally calculate the temperature on the outer T ′sh 
and inner T ″sh surfaces of the cladding:

T ′sh = T2 + qv.st∙a1
2∙Rl2/π; T ″sh = T ′sh + qv.st∙a1

2∙Rl1/π    (14)

and find the average value Tsh. The average value of the 
fuel temperature Тf is found from the determination of the 
weighted average temperature with known Т2, Тsh and Т. 
We consider the quadratic function as approximating the 
temperature profile in the fuel.

The maximum temperature value in the fuel of the calcu-
lation cell Tf max is determined according to the dependence:

Tf 
max = 2Tf – T ″sh. (15)
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Results of calculations

We considered a calculation version of the core model, 
which consists of m groups of elementary cells, which 
were identical, square in cross section, with a size of а1 
(Podgorny and Kuzevanov 2020).

In terms of thermal, structural, flow and temperature 
characteristics, the calculated core corresponds to the 
PWR core (The Westinghouse Pressurized Water Reac-
tor Nuclear Plant 1984), except for the radial dimensi-
ons: one elementary channel in the model fuel assembly 
(n2 = 1) of n2 = 289 identical elementary channels in a real 
fuel assembly.

Calculating the weighted 
average temperature field in a 
nonstationary process

Figs 1, 2 show the results calculating changes in the 
weighted average temperature fields after step-like dis-
turbances were introduced into the stationary operation 
of the reactor. We studied the complex disturbance and 
the disturbance in one parameter, i.e., in terms of the re-
actor thermal power. The complex disturbance manife-
sted itself as a simultaneous change in the reactor power, 
core inlet temperature and coolant flow rate, as well as 
the heat transfer coefficient, consistent with the change 
in the named parameters. The distribution of the weigh-
ted average temperature in the core model was calcula-
ted by the method of establishing the implicit solution 
to equation (1) using the system of equations (7) to de-
termine the coolant heating in the elementary channels 
(Podgorny and Kuzevanov 2020).

Figs 3, 4 show the recovered temperature fields for the 
diametrical cross section of fuel elements in the calcu-
lated cells with the indicated relative coordinates of the 
cell centers for different times of the transient process. 
For comparison, the same figures show the temperatu-
re values obtained as a result of CFD simulation of the 
transient process (Shaw 1992, Mohammadi and Piron-
neau 1994, Petrila and Trif 2005, ANSYS Fluent 2016a, 
b, c, Anderson et al. 2009). Since the maximum differen-
ce between the compared temperature values at similar 

Figure 1. Comparison of the average core temperature with 
thermal power surges by 50%, coolant mass flow rate by 20%, 
and coolant temperature at the core inlet by 20%: 1 – CFD sim-
ulation; 2 – developed algorithm

Figure 2. Comparison of the average temperature in the core 
with a thermal power surge by 50%: 1 – CFD simulation; 2 – de-
veloped algorithm

Figure 3. Comparison of the recovered temperature fields of the 
fuel elements with the results of CFD simulation for a time of 
5 seconds from the beginning of the transient process shown in 
Fig. 1: 1 – fuel temperature of the central fuel element (in the 
central plane of the core); 2 – temperature of the central fuel 
element cladding (in the central plane of the core); 4 – fuel tem-
perature of the fuel element of Channel 4 at a distance of 0.976 
m below the central plane of the core; 5 – temperature of the fuel 
element cladding of Channel 4 at a distance of 0.976 m below 
the central plane of the core; 1, 2, 4, 5 – developed algorithm; 
3, 6 – CFD simulation
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points of the cross-section of the elementary cells does 
not exceed 50 °C, the proposed method for recovering 
the temperature field of a heterogeneous reactor can be 
recognized as a completely satisfactory approach to de-
scribing temperature changes in the elements of the core 
of a nuclear reactor in transient processes.

Conclusion

The proposed method for recovering the temperature 
field of a heterogeneous reactor does not claim to incre-
ase the level of detail of the temperature distribution in 
the core components in comparison with the resulting 
description of the temperature field using CFD simu-
lation. However, in some cases, the authors’ approach 
described in this paper can be useful, since it has the 
following advantages:

 - mobile availability of the computing power required 
for the calculations;

 - short time for the complete calculation of the tem-
perature distribution in the local region of the core 
of interest to the researcher, i.e., approximately two 
orders of magnitude less than when the basic CFD 
simulation algorithms are used; and

 - operational preliminary calculation of a set of op-
tions for structurally different cores to select a lim-
ited number of them for the purpose of subsequent 
refining analysis.

Note that the time of calculating the temperature field 
by the recovery method is less than the time of the tran-
sient process. In this case, such a computational procedu-
re can be an element of a complex program that describes 
the dynamics of the reactor circuit, e.g., in the software 
package of a nuclear power plant simulator. In addition, 
it is possible to use the recovery algorithm in the control 
systems of NPPs to correct the control based on the fore-
cast of changes in the temperature field.
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