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Abstract
Motor operated valves (MOV) are one of the most numerous classes of the nuclear power plant components. An im-
portant issue concerned with the MOV diagnostics is the lack of in-process (online) automated control for the MOV 
technical condition during full power operation of the NPP unit.

In this regard, a vital task is that of the MOV diagnostics based on the signals of the current and voltage consumed 
during MOV ‘opening’ and ‘closing’ operations. The current and voltage signals represent time series measured at 
regular intervals. The current (and voltage) signals can be received online and contain all necessary information for the 
online diagnostics of the MOV status.

Essentially, the approach allows active power signals to be calculated from the current and voltage signals, and char-
acteristics (‘diagnostic signs’) to be extracted from particular portions (segments) of the active power signals using the 
values of which MOVs can be diagnosed.

The paper deals with the problem of automating the segmentation of active power signals. To accomplish this, an algo-
rithm has been developed based on using a convolutional neural network.
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Introduction

It often happens in time-series analysis problems that a 
series is produced by different generation mechanisms. 
Time series partitioning into internally homogeneous 
segments is therefore an important issue involved in data 
mining since it makes it possible to select the key charac-
teristics of a time series from large data arrays in a more 
compact form (Abonyi et al. 2002).

An example of such time series is signals of the MOV 
active power during “opening” and “closing” operations, 
and diagnostics consists in partitioning of signals into 
segments and further extraction of ‘diagnostic signs’ (nu-
merical values based on which conclusions are made as 
to the MOV serviceability or unserviceability) from each 
segment (Matveyev et al. 2009). Each segment is respon-
sible for the actuation of particular MOV parts and com-
ponents and has specific features of its own.
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Such partitioning is manual in most MOV diagnostics 
systems, this taking more time and making it impossible 
to automate diagnostics. To address this issue, a deep neu-
ral network has been proposed which segments automati-
cally the active power signal.

Problem statement

In accordance with methodology (MT 1.2.3.02.999.0085-
2010), MOV diagnostics is based on a set of numerical 
values at representative points and in particular time inter-
vals of the active power signal in the MOV actuation cy-
cle. The representative points in Fig. 1 have been selected 
with regard for the factors affecting the MOV technical 
condition and the active power signal changes, and based 
on the valve gate motion cycles.

The drawback of this approach is the human-depend-
ent algorithm of identifying time intervals. Therefore, 
automation of the MOV diagnostics process required au-
tomatic partitioning of the active power signal into seg-
ments so that to extract further from these the numerical 
values that characterize the MOV technical condition.

It was shown in (Ronneberger et al. 2015) that 
artificial neural networks coped well with the time series 
segmentation.

Initial data

Electrical current and voltage parameters from the MOV 
motor stator windings (for three phases) were used to cal-
culate the active power signal. The active power was cal-
culated using the formula

Figure 1. Representative points of an active power signal: a) gate opening, b) gate closing; UB – upper bound; LB – lower bound.



Nuclear Energy and Technology 7(3): 207–213 209

1( ) · ( )· ( )
t T

t
P t u i dt

T
τ τ

+
= ∫ ,	 (1)

where Т is the carrier frequency cycle (50 Hz); and u(τ), 
i(τ) are the voltage and current values at time τ respectively.

Determination of segments for the 
neural network training

The following time intervals were selected for the neural 
network training:

•	 motor reversal;
•	 gate shift (for the ‘opening’ signal);
•	 gate moving;
•	 gate seal (for the ‘closing’ signal).

The result of the segmentation is therefore the partition-
ing of the active power signal into four segments (Fig. 2).

For the network training, the available active power 
signals were integrated into a unidimensional array and 
“cut” into sections of the length 100000. These sections 
were marked in an interactive mode using a code written 
in the Python language where the respective class was set 
to match each point in the signal. Further, a target vector 
was generated using the One hot coder. The coder takes a 
column with categorical data and creates several new col-
umns for this. Numbers are replaced for unities and zeroes 
depending on which value is specific to the given column. 
In our case, there were five columns which denote

•	 four classes (see Fig. 2) with the marks 1 through 
4 matching the segment number and colored grey;

•	 one class with the mark “No_label” (the remaining 
signal portions of no interest in terms of analysis 
and uncolored, see Fig. 2).

As a result, the initial data is represented by a set of 
571 portions of an equal length and their respective masks 
with designation of each pixel in the signal belonging to 
the class (segment) in Fig. 2.

For clarity, Table 1 presents data on the segments 
marked and their quantity and ratio.

Network architecture

The U-Net network proposed in (Ronneberger et al. 2015) 
and generated in 2015 for segmentation of biomedical 
images was taken as the basis. Its architecture represents 
a convolutional network modified such that it could hand-
le less examples (training patterns) and would make seg-
mentation more accurate.

The network consists of an encoder and a decoder 
connected in series. The encoder is responsible for 
capturing different features in various scales, and the 
decoder uses these features to build the final segmentation 
map. A distinction of this model is that it includes “skip-
connection” components which connect the decoder 
and encoder parts in each scale, that is, the symmetrical 
encoder output and the output of the preceding decoder 
layer are connected for the tensor transmission to the 
decoder input. These layers make it possible to use 
repeatedly the maps of features from any scale in the 
decoder, this leading to a more detailed segmentation.

Batch normalization was also added after all convo-
lutional layers which improved the convergence process 
and the training rate. Besides, it helps monitoring the net-
work weights since their values are at all times saved in 
the limits of rated values.

Loss functions

As can be seen in Table 1, there is an unbalance of classes 
clearly observed in data. Unbalance of data is common to 
computer-aided training problems such as segmentation 
and classification. In such situation, where all data is used 
as is, the classifier will be highly likely to demonstrate a 
biased capacity in favor of the most represented classes.

Various loss functions were studied to address this is-
sue and to achieve the best segmentation quality.

Cross entropy

The most commonly used loss function for an image 
segmentation problem is the cross entropy loss which in-
vestigates each pixel individually and compares the class 
predictions with the given target vector.

Table 1. Segment data

Class Revers Podriv Flat Stop No_label
Respective time 
interval (segment)

Motor 
reversal

Gate 
shift

Gate 
moving

Gate 
seal

Signal portions 
not considered in 

analysis
Pixel ratio, % 0.69 0.68 95.93 0.38 2.32
Number of 
segments in sample 

333 121 330 137 838

Sample size 571

Figure 2. Segmentation of an active power signal: 1 – motor 
reversal; 2 – gate shift (‘opening’); 3 – gate moving; 4 – gate 
seal (‘closing’).
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Since the cross entropy loss evaluates the class predic-
tions for each pixel vector individually and then under-
takes averaging over all pixels, it is essentially states that 
the training of each pixel in the image is identical. This 
poses a problem since the classes under consideration 
have an unbalanced presentation for the sample.

In (Long et al. 2015), it is proposed that this loss is 
weighed for each output channel so that to oppose the un-
balance of classes which the dataset contains. The formu-
la for the categorical cross entropy weighed by classes is 
written as follows:

1 · lgi ij ij
i j

WCE y p
N

ω= − ∑ ∑ ,	 (2)

where N is the number of classes; y is the actual value of 
the class the pixel belongs to; and p is the predicted value 
of the class for the pixel.

A loss weighing pattern is discussed in (Ronneberger et 
al. 2015) for each pixel so that there is a greater weight at 
the boundaries of the segmented items. This loss weighing 
pattern has helped the U-Net model segmenting cells in bio-
medical images in a discontinuous manner such that certain 
cells can be easily identified in the binary segmentation map.

The final formula for the pixel-weighed categorical 
cross entropy takes therefore the form

( )1 · lgi ij ij ij
i j

PWCE y p
N

ω ω= − +∑∑ ,	 (3)
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where ωi is the weight of the class which was calculated 
using the formula proposed in (Xiaoya 2020); ni is the 
number of elements in the ith class; n is the total number 
of elements; d is the distance to the nearest boundary; and 
ωij is the pixel weight.

This strategy can be used to control the segmentation 
results both at the class level and at the pixel level with 
the loss function adjustment as desired.

Fig. 3 shows how the pixel weights calculated using 
formula (3) look like.

Dice coefficient

Dice coefficient described in (Milletari 2016) and pre-
sented for the first time in (Sørensen 1948) was also 
considered as a loss function in (Ronneberger et al. 
2015). This function has proved itself to perform well 
in solving semantic segmentation problems with extre-
mely unbalanced classes. This indicator is in the range 
[0, 1] where the Dice coefficient, equal to unity, means 
an ideal and complete overlap. Dice coefficient was ini-
tially developed for binary data and can be calculated 
using the formula

Dice = 2|A ∩ B| / (|A| + |B|).	 (4)

Here, the numerator is a doubled set of the elements 
shared by sets A and B, and the denominator is the sum of 
the quantities of the elements in these sets.

In the event of the Dice coefficient estimation on pre-
dicted segmentation masks, one can approximate |A ∩ B| 
as the element-wise multiplication between the prediction 
and the target mask, and then sum up the resultant matrix.

Since the target mask is binary for each class, then all 
pixels from the prediction, which are not “activated” in 
the target mask, are nulled effectively. For the rest of the 
pixels, in essence, less valid predictions are penalized; a 
higher value of this expression leads to a better Dice co-
efficient.

A simple sum is used by some researchers (Drozdzal 
et al. 2016) to quantitatively estimate |А| and |B|, while 
others (Xiaoya 2020) prefer to use the sum of squares for 
this computation. Preference was given in this paper to 
the sum of squares since this loss function offers a better 
convergence. In this connection, the formula for the Dice 
coefficient calculation takes the form

Figure 3. Diagram of pixel weights.
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where yi and pi are the actual and predicted probabilities 
of the class membership.

Then the loss function is determined as

Dice_loss = 1 – Dice.	 (6)

As to the neural network’s output data, the numerator in 
(5) presents the common activations between the prediction 
and the target mask, as the denominator takes into account 
the number of the activations in each mask individually. This 
leads to the normalization of losses in accordance with the 
target mask size, so no Dice_loss hampers the training of 
classes with a smaller spatial representation in the input data.

Similarly to formulas (3) and (4), we shall introduce 
the notion of pixel-weighed Dice_loss:

( )2

ij ij ij
i j

1 =  + · y -p
N

PWDice_loss Dice_loss ω∑∑ .	 (7)

Evaluation of the neural network 
quality

A function called Intersection over Union (IoU), also 
known as the Jaccard index and being one of the most 

commonly used indicators in semantic segmentation, was 
used as the metric for the neural network quality evalua-
tion. IoU is the overlapping region between the predicted 
segmentation and the actual segmentation divided into the 
union region between the former and the latter. This indi-
cator is in the range [0, 1] (0–100%) where zero means 
no overlapping and unity means the complete overlapping 
of segmentation. For a multiclass segmentation, the mean 
value of IoU (Mean_IoU) is computed by taking IoU of 
each class and averaging these.

The formula for the IoU coefficient determination 
bears resemblance to Dice coefficient but differs in the 
denominator and looks as follows:

IoU = |A ∩ B| / |A ∪ B|,	 (8)

where |A ∩ B| is the intersection of objects A and B; and 
|A ∪ B| is their cohesion.

Training

The neural network was trained with a fixed set of hy-
perparameters for all tests. The Adam algorithm (Kingma 
and Ba 2017) with a lot size of 20 and a training rate of 
0.001 was selected as the optimizer. Each time, after 10 
epochs with no improvement, the training rate was redu-
ced by 20%.

Fig. 4 presents the results of the network training based on 
training and valdiation samples using different loss functions.

Figure 4. Mean IoU metric during network training with different loss functions (see formulas 8, 3, 7 and 2): a) – training sample; 
b) – validation sample.
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A categorical cross entropy leads to better results on 
the training sample but to worse results during valida-
tion, this indicating a better generalizing capability of the 
Dice function.

As can be seen in the diagrams above, adding pixel 
weighing to the loss function leads to a better conver-
gence of the network and, in the event of the weighed 
PWDice-loss, the values for the training sample of the 
Mean_IoU metric are 5 to 10% as large as those for Dice_
loss without weighing. However, the values of the Mean 
IoU metric for the test sample of these functions are ap-
proximately equal.

The values of the IoU metric for each class (see Table 1) 
computed by the network with different loss functions are 
presented in Table 2 for a more detailed evaluation of the 
segmentation results.

The neural network predicts the probability of a particular 
class for each time point of the active power signal. There-
fore, by selecting a set of the active power signal points, the 
probability for which is close to unity in the Flat class, one 
can state that these points belong to the Stroke segment.

An example of the active power signal segmentation 
is presented in Fig. 5. The lines show the probabilities for 
the classes (Flat, Podriv, Revers, Stop). By isolating these 
probabilities with a threshold of, e.g., over 0.95, we get 
the boundaries of the segments.

Conclusions

A novel approach to segmenting the MOV active power 
signals has been developed and investigated using a 
convolutional neural network. It has been found that the 
Dice_loss loss function allows achieving the best results.

The neural network has shown high-quality results and 
makes it possible to automate the MOV diagnostics pro-
cess, to avoid the human factor effects, to increase greatly 
the diagnostics rate, and to detect the MOV failures, as 
well as to exclude potential errors caused by the human 
factor effects.

Thanks to automating the process of partitioning the 
active power signals into segments, the MOV techni-
cal condition diagnostics can be undertaken both offline 
and online.
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