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Abstract
The article discusses the neutron flux stability in the core of a high-power sodium-cooled fast reactor (of the BN-type) 
without feedbacks. The importance of this problem for high-power BN-type reactors is associated with the specific 
features of the layout of their cores, including a large diameter and height/diameter ratio about 5. The technique used 
to substantiate the stability of neutron fields is based on the analysis of the spectrum of the matrix of the system of 
spatial kinetics equations describing the core of a high-power BN-type reactor without feedbacks. A computational 
model of the spatial kinetics of a high-power BN-type reactor has been developed in the modal approximation based 
on the representation of an unsteady flux as a sum of orthogonal functions multiplied by time-dependent amplitudes. 
The eigenfunctions of the conditionally critical problem are used in the diffusion approximation, which in the discrete 
case form a complete system. The spectrum of the matrix of the system of ordinary differential equations describing 
the spatial kinetics of the reactor has been calculated. It is shown that the neutron flux in the core of a high-power BN-
type reactor without feedbacks is stable. Test calculations have illustrated the damping of perturbations of the power 
distribution for a reactor in a critical state.
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Introduction

Numerous safety studies of sodium-cooled fast reactors 
have shown that, in order to exclude the possibility of de-
struction of the core in beyond design basis accidents of 
the ULOF type, the core height should be no more than 
85–90 cm, and above it there should be a sodium plenum 
(Poplavsky et al. 2011). In order to provide the requi-
red thermal power of the core within these constraints, 

its diameter for a high-power BN-type reactor should be 
more than 4.3 m. The height/diameter ratio for such a core 
exceeds 5. However, the Nuclear Safety Rules (NP-082-
07 2008) require proof that there are no oscillations in 
the neutron flux density, which is especially important for 
such ‘flat’ cores.

The concept of ‘stability’ as applied to nuclear reactors 
is formulated similarly to the concept of stability of any 
dynamic systems, i.e., the reactor state is called ‘stable’ if 
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the deviations of the reactor parameters (including pow-
er) from the stationary values that have arisen after the 
introduction of a disturbance into the reactor do not in-
crease indefinitely with time (limited response to limited 
impact). Otherwise, if the disturbance introduced into the 
reactor increases with time indefinitely, the reactor state is 
called ‘unstable’ (Akcasu 1971, Coughanowr 1991).

Mathematical criteria for the stability of dynamical sys-
tems are formulated in the theory of differential equations.

The solution φ(t) of the system of differential equations

ẋ = f(t,x)

with the initial conditions x(0) = φ(0) is said to be Lya-
punov stable if for any ε > 0 there is δ(ε) > 0 such that 
if ||x(0) – φ(0)|| < δ(ε), then ||x(t) – φ(t)|| < δ(ε) for any t 
≥ 0. Thus, Lyapunov stability means that small perturba-
tions of the initial condition do not lead to an unbounded 
increase in time of the perturbation of the solution x(t) 
(Bibikov 2011).

If the solution φ(t) of the system satisfies not only the 
Lyapunov stability condition, but also the condition

lim ( ) ( ) 0,
t

t t
��

� �x φ‖ ‖

then the solution of the system is said to have the property 
of asymptotic stability (Bibikov 2011).

One of the methods used to assess the stability of pow-
er distribution in nuclear reactors is to analyze the sta-
bility of a system of differential equations describing the 
kinetics of a reactor in the approximation of expansion 
in some system of functions (as a rule, in terms of eigen-
functions of a conditionally critical diffusion problem) 
(March-Leuba and Blakeman 1991, Hashimoto 1993, 
Miro et al. 2002). The advantage of this method is that, 
with a complication of the system of equations describ-
ing the dynamics of the reactor that is insignificant in 
comparison with the point kinetics, it makes it possible 
to estimate the possibility of oscillations of the power dis-
tribution in the reactor. As a rule, the analysis of the sta-
bility of power distribution is limited to the use of the first 
few harmonics of the conditionally critical problem. Al-
though this amount is insufficient for a correct description 
of the spatial kinetics of the reactor in the general case, 
such an approach is justified for stability analysis, since, 
as a rule, the onset of instability of the power distribution 
leads to the excitation, primarily, of the first harmonics 
corresponding to the largest values of the eigenvalues Ki 
(Takeuchi et al. 1994).

In this work, the stability of the power distribution of 
a high-power BN-type sodium-cooled fast reactor without 
feedbacks is considered by analyzing the eigenvalues of a 
system of differential equations describing the reactor kinet-
ics when the neutron flux is expanded in terms of the eigen-
functions of the conditionally critical problem. The nuclear 
reactor dynamics model without feedbacks is applicable to 
the analysis of the processes occurring in the reactor core 
when the reactor operates in the starting power range.

Deriving a system of reactor 
kinetics equations when 
expanding a non-stationary flux in 
eigenfunctions of a conditionally 
critical problem

One of the ways to solve the problems of spatial kinetics 
is to expand the non-stationary neutron flux into a series 
in terms of the system of orthogonal functions:

. (1)

As shown in (Bell and Glesston 1974), the eigenfunc-
tions of the discretized neutron diffusion equation form a 
complete system, which makes it possible to use the ei-
genfunction expansion of the conditionally critical diffu-
sion equation for the total flux, similar to (1).

Let us consider the non-stationary diffusion equation 
(coordinates r, E, t, on which the values entering into the 
equation depend, are omitted for brevity)

,
1 ( ) (1 )( )p j d j j

j
A A F F C

v t
χ β λ χ∂Φ

+ + ∆ Φ = − + ∆ Φ +
∂ ∑

( )j
j j j

C
F F C

t
β λ

∂
= + ∆ Φ −

∂
 (2)

where A is the operator of diffusion, absorption and scat-
tering of a neutron of the stationary conditionally critical 
problem describing the reactor critical state, defined as

( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) , ,tot E
s

A E D E E E E E E E dE
′

′ ′ ′Φ = −∇ ∇Φ +Σ Φ − → Φ∑∫r r r r r r r

F is the neutron fission operator of the stationary conditio-
nally critical problem describing the reactor critical state, 
defined as

( , ) ( , ) ( , )fE
F E v E E dEΦ = Σ Φ∫r r r

ΔA are ΔF are the operator disturbances that brought the 
reactor out of the critical state; Q is the external source; Cj 
is the concentration of delayed neutron group j precursor 
nuclei; v is the neutron speed; χp is the prompt neutron 
spectrum; β is the total effective fraction of delayed neu-
trons; βj is the group fraction of delayed neutrons; λj is the 
is the decay constant of group j delayed neutrons; χd,j is 
the spectrum of group j delayed neutrons.

Let us substitute expansion (1) into system (2), 
choosing as functions Φi the eigenfunctions of the ei-
genvalue problem:

AΦi = χFΦi /Ki, (3)

,
1 ( ) (1 ) ( )i

i i i p i i j d j j
i i i j

T T A A T F F C Q
t v

χ β λ χ∂
Φ + + ∆ Φ = − + ∆ Φ +

∂∑ ∑ ∑ ∑ ,

( )j
j i i j j

i

C
F F T C

t
β λ

∂
= + ∆ Φ −

∂ ∑ . (4)
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Taking into account the equalities AΦi = χFΦi /Ki and 
χFΦi = (1 – β)χp FΦi + βχd FΦi, (χ is the total spectrum of 
fission neutrons, χd is the spectrum of delayed neutrons) 
system (4) can be transformed as

1i
i i i i i

i i ii

T T F T A
t v K

χ∂
Φ + Φ + ∆ Φ =

∂∑ ∑ ∑

,( ) ( )i i i i i j d j j
i i j

T F F T F F C Qχ χ β λ χ= + ∆ Φ − + ∆ Φ + +∑ ∑ ∑ , (5)

( )j
j i i j j

i

C
F F T C

t
β λ

∂
= + ∆ Φ −

∂ ∑ .

We multiply the first equation of the resulting sys-
tem by the eigenfunctions Φ+

k of the adjoint eigenvalue 
problem

A+Φ+
k = χF+Φ+

i/Kk, (6)

and the equations for delayed neutrons by χd,j Φ
+

k.
Taking into account the orthogonality of the eigenfunc-

tions of the direct and adjoint problems
 for ,

,
0  for ;

k
k i

k i
F

k i
γ

χ+ =
Φ Φ =  ≠

 (7)

(here γ0 is the fission neutrons importance, for k > 0 γk 
is a generalization of the concept of the fission neutrons 
importance for higher harmonics of the neutron flux) we 
obtain the system of equations

1,i
k i

i

T
t v

+∂
Φ Φ =

∂∑

( )1
,1 , , ,k k k k i k d i j k d j j

i j
K T F T F Cχ χ β λ χ− + + += − Φ Φ − Φ Φ + Φ +∑ ∑

, , , ,k i k i i k i i k d i
i i i

Q T A T F T Fχ χ β+ + + ++ Φ − Φ ∆ Φ + Φ ∆ Φ − Φ ∆ Φ∑ ∑ ∑ , (8)

,,k d j jC
t
χ+∂ Φ

=
∂

, , ,, , ,i k d j j i i k d j j i j k d j j
i i

T F T F Cχ β χ β λ χ+ + += Φ Φ + Φ ∆ Φ − Φ∑ ∑ .

By entering parameters

ρk = 1 – 1/Kk;
Λk,i = 〈Φ+

k, Φi/v〉/〈Φ
+

k, χFΦk〉;
βeff,k,i,j = 〈Φ+

k, χd,jβjFΦi〉/〈Φ
+

k, χFΦk 〉;
βeff,k,i = 〈Φ+

k, χd,βFΦi 〉/〈Φ
+

k, χFΦk〉;
ck,j = 〈Φ+

k, χd,jCj〉/〈Φ
+

k, χFΦk〉;
qk = 〈Φ+

k, Q〉/〈Φ
+

k, χFΦk〉;
δAk,i = 〈Φ+

k, ΔAΦi〉/〈Φ
+

k, χFΦk〉;
δFk,i = 〈Φ+

k, χΔFΦi〉/〈Φ
+

k, χFΦk〉;
δDk,i,j = 〈Φ+

k, χdβjΔFΦi〉/〈Φ
+

k, χFΦk 〉,

which are a generalization of the parameters of point ki-
netics, we bring the system to the form

( ) j j j
j j

d
dt

� � � � � � �� �TΛ           ρ    β T  λ c q AT FT D T� � �

j
j j j j

d
dt

� λ� � �
c

β T  D T c  (9)

Here Λ is the matrix composed of elements Λk,i; ρ is the 
diagonal matrix, on the diagonal of which the elements 
ρk are located; β is the matrix composed of the elements 
βeff,k,i; βj is the matrix of elements βeff,k,i,j; λj is the diagonal 
matrix with elements of λj on the diagonal; T is the vector 
of the amplitudes of the harmonics Tk; cj is the vector of 
elements ck,j; q is the matrix of elements qk; δA is the ma-
trix of elements δAk,i; δF is the matrix of elements δFk,i; 
δDj is the matrix of elements δDk,i,j.

The number of equations in system (9) is determined 
by the number of eigenfunctions used to represent the 
spatial dependence of the neutron flux N and the number 
of delayed neutron groups Nd and is equal to (Nd + 1)N.

Test calculations in the modal 
kinetics model of a BN-type 
reactor

In order to check the correctness of the equations obtained, 
a calculation was performed using the modal kinetics model 
of the transient process in a high-power BN-type reactor.

To calculate the coefficients included in system (9), and 
to solve this system, computer programs were developed.

The higher harmonics of the conditionally critical 
problem, necessary for calculating the coefficients of 
system (9), were calculated in the diffusion approxima-
tion using the modified neutronic calculation module of 
the REACTOR software package (Gulevich et al. 2019). 
To solve the partial eigenvalue problem in the modified 
module, the implicitly restarted Arnoldi method was used, 
implemented in the ARPACK software package (Lehoucq 
et al. 1998).

The parameters of system (9) were calculated by sum-
ming over the volume of the calculated region the val-
ues of the direct and adjoint flux harmonics, multiplied 
by the corresponding coefficients, i.e., the inverse neutron 
velocity, fission neutron source, delayed neutron source, 
external neutron source, deviations of the neutron transfer 
operator and the fission neutron source and delayed neu-
trons from a stationary state.

To solve system of equations (9), the software pack-
age for solving systems of ordinary differential equations 
ODEPACK (Hindmarsh 1983) was used, the method of 
the backward differentiation formula was applied.

The transient process consisted in the rise of the re-
actor power after a change in state, leading to the in-
troduction of positive reactivity. In the initial state, the 
reactor was critical (matrices δA, δF and δDj had zero 
elements) and operated at a power of 1 kW. The reactor 
was brought out of the critical state due to a 5% decrease 
in the sodium density in the active part of 18 central fuel 
assemblies within 10 seconds, the reactor parameters 
remained unchanged within 200 seconds, after which, 
within 10 seconds, the sodium density in the central fuel 
assemblies returned to the original value. The values of 
the elements of the matrices δA, δF and δDj were calcu-
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lated for the disturbed state of the reactor. It was assumed 
that the elements of the matrices δA, δF and δDj when a 
disturbance is introduced into the reactor, change line-
arly with time, i.e., when a disturbance was introduced, 
they would linearly increase from zero values to values 
corresponding to the disturbed state; when the reactor re-
turned to its initial state, they would linearly decrease to 
zero values.

Conditionally critical calculation of the disturbed state 
of the reactor showed that the introduced disturbance of 
the composition corresponded to an increase in reactivity 
Δρ0 = 4,25∙10–5ΔK/K.

The transient process was calculated in two models: in 
the standard model of point kinetics with the assignment 
of the introduced reactivity according to the law

0

0

0

0  for 10 s or 230 s;
( 10) /10  for 10 s 20 s;

( )
(230 ) /10 for 10 s 20 s;
 for 20 s 220 s.

t t
t t

t
t t

t

ρ
ρ

ρ
ρ

< >
∆ − < <∆ = ∆ − < <
∆ < <

 
(10)

and in modal kinetics model (9) using 10 eigenfunctions 
in expansion (1).

The reactor power calculated in the modal approxima-
tion (Fig. 1) coincided with the power calculated in the 
point kinetics model with high accuracy (the difference 
did not exceed 0.14%), which indicates the correctness 
of the developed model and its software implementation.

The temporal behavior of all the higher harmonics of 
the neutron flux during the transient process is character-
ized by the following regularity: at the initial stage, there 
is a significant (by several orders of magnitude) increase 
in the ratio of their amplitudes to the amplitude of the 
fundamental harmonic |Ti(t)|/T0(t). Then this ratio for all 
the harmonics is stabilized, which means that the reac-
tor accelerates with a constant distribution of the neutron 
flux. After the reactor returns to its initial state, the higher 
harmonics damp, and the neutron flux distribution in the 
reactor is again established, corresponding to the funda-
mental harmonic of the conditionally critical problem 
(Fig. 2). Since the disturbance introduced into the reactor 
is close to axisymmetric, the ratio |Ti(t)|/T0(t) reaches the 
highest value (8∙10–4) for the fifth harmonic, which is due 
to the fact that it has a radial character. For the first har-
monic, which has an azimuthal character, the maximum 
value of the ratio |Ti(t)|/T0(t) is 2,7∙10–7.

Analysis of the stability of a system 
of spatial kinetics equations of a 
high-power BN-type reactor

The stability analysis was carried out for the system of 
equations of the spatial kinetics of an undisturbed reactor 
without feedbacks.

This system can be rearranged into the form

1 1 1( ) j j
j

d
dt

� � �� � ��Λ               ��Λ�T Λ    ρ    β T λ  c q, (11)

j
j j j

d
dt

� �
c

β  T λ c .

According to the theory of ordinary differential equa-
tions, the stability of the solution to a system of linear 
differential equations with constant coefficients is deter-
mined by the spectrum of the system matrix.

In the case under consideration, the system matrix 
takes the form

1 1 1
1

1 1

( )

0 0

0 0

d

d d

N

N N

ρ β λ λ

β λ

β λ

− − − Λ − Λ Λ
 

− 
 
 
 − 

�

�
� � � �

�

. (12)

The absence in the spectrum of the matrix of eigenval-
ues with a positive real part is a criterion for the stability 
of the system of ordinary differential equations. If all the 
eigenvalues have negative real parts, the system has as-
ymptotic stability, if among the eigenvalues there is a sim-
ple eigenvalue with zero real part, the system is Lyapunov 
stable (Bibikov 2011).

To analyze the stability of the power distribution in the 
high-power BN-type reactor, parameters (9) and matrix 
elements (12) were calculated.

The stability analysis was carried out for two options, 
i.e., stationary operation at a power level close to the min-
imum controllable power, when the power of the subcrit-
ical reactor is maintained by its own neutron source asso-
ciated with the decay of transuranic elements in the core, 
and for stationary operation in a critical state.

The thermal power of the reactor with the source was 
taken to be 1 kW. According to the estimates made, for the 

Figure 1. Change in the reactor power in the test calculation.

Figure 2. Relative amplitudes (|Ti(t)|/T0(t)) of the fourth, fifth, 
seventh and ninth harmonics of the neutron flux.
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considered version of a high-power BN reactor, this pow-
er is achieved at a reactivity of ρ0 = –5,51 × 10–4ΔK/K.

When we use five terms in expansion (1) and six groups 
of delayed neutrons, the dimension of system (10) is 35. 
Thus, matrix (12) has 35 eigenvalues. To solve the com-
plete eigenvalue problem for this matrix, the LAPACK 
software package (Anderson et al. 1999) was involved, 
which implements the solution of the complete eigenvalue 
problem using the QR algorithm. The calculation showed 
that all the eigenvalues of the spatial kinetics matrix for the 
considered variant are real and less than zero, the maxi-
mum eigenvalue being –9.28 × 10–3s–1. Thus, the system of 
spatial kinetics equations for a high-power BN-type reac-
tor with a source is asymptotically stable (Bibikov 2011).

To test the effect on the eigenvalues of the system of 
kinetic equations of changes in the number of harmon-
ics used to describe the spatial dependence of the neutron 
flux in expansion (1), the matrix spectrum of the system 
(11) was calculated using one term in the expansion, 
which corresponds to the approximation of point kinet-
ics. Table 1 contains the eigenvalues of the kinetic matrix 
using one term in the expansion and 11 maximum eigen-
values of the kinetic matrix using five expansion terms.

For the case of point kinetics, the number of eigenvalues 
is by one greater than the number of groups of delayed neu-
trons. In the case of expansion in harmonics, each eigenvalue 
of the system of point kinetics equations corresponds to five 
(in the considered case) eigenvalues, since the system in-
cludes the concentrations of precursor nuclei and the neutron 
flux expanded in the first five harmonics of the neutron flux. 
The eigenvalue minimum in absolute value of these five cor-
responds to the expansion of the flux and the concentration 
of precursor nuclei in terms of the fundamental harmonic and 
coincides with the corresponding eigenvalue of the point ki-
netics system. Thus, the first eigenvalue of the system written 
for the expansion with five terms coincides with the first ei-
genvalue of the system of point kinetics equations, the sixth 
one coincides with the second eigenvalue of the point kinet-
ics system, the 11th eigenvalue coincides with the third, etc.

As can be seen from the table, refining the description of 
the reactor kinetics does not lead to an increase in the maxi-
mum eigenvalue of the system of reactor kinetics equations.

For a reactor operating in a critical state at ρ0 = 0, the 
spectrum of the matrix of point kinetics system and sev-

en maximum eigenvalues of the matrix of spatial kinetics 
system are given in Table 2.

The maximum eigenvalue of kinetics system of a criti-
cal high-power BN-type reactor without feedbacks is zero; 
thus, its power distribution is Lyapunov stable (Bibikov 
2011). The zero eigenvalue is associated with the zero flux 
harmonic corresponding to zero reactivity, and expresses 
the fact that the power of the critical reactor without feed-
backs is not determined. Therefore, when the power of the 
fundamental harmonic is disturbed at the end of the tran-
sient process, the reactor is stabilized at a new power level 
that does not coincide with the power level before the dis-
turbance. The disturbances of higher harmonics attenuate 
and return to zero values at the end of the transient process.

Calculations of the decay of disturbances of the first 
and fourth higher harmonics of the neutron flux were per-
formed. After a disturbance equal to 10 W is introduced, 
the amplitude of the harmonic decreases to a value close 
to zero in a time of the order of 10–4 s (Fig. 3).

Conclusion

As shown by the calculation of the spectra of the matrices of 
the system of differential spatial kinetics equations for the 
subcritical and critical states of the high-power BN-type re-
actor without feedbacks, the stability criterion for the states 
considered is fulfilled, the neutron flux in the subcritical 
core of the BN reactor is asymptotically stable, the neutron 
flux in the critical core of the BN reactor is Lyapunov stable.

We plan to continue our work by adding feedbacks 
to the spatial kinetics model and substantiating the sta-
bility of the neutron flux in the high-power BN core 
with feedbacks.

Table 1. Spectra of matrices of the system of kinetic equations 
of a high-power BN-type reactor with a source

Point kinetics, s–1 Spatial kinetics, s–1

–9.28278E–3 –9.28278E–3
–1.68761E–2 –1.33580E–2
–8.05185E–2 –1.33598E–2
–2.01789E–1 –1.33948E–2
–7.43827E–1 –1.33950E–2
–2.78100E+0 –1.68761E–2
–9.83543E+3 –2.99014E–2

–2.99298E–2
–3.05003E–2
–3.05010E–2
–8.05185E–2

Table 2. Spectra of matrices of the system of kinetic equations 
of a high-power BN-type reactor in a critical state

Point kinetics, s–1 Spatial kinetics, s–1

0.0 0.0
–1.5019E–2 –1.3356E–2
–7.0303E–2 –1.3358E–2
–1.8911E–1 –1.3395E–2
–7.2721E–1 –1.3395E–2
–2.7576E+0 –1.5019E–2
–8.5260E+3 –2.9874E–2

Figure 3. Decay of disturbances of the first and fourth higher 
harmonics in a high-power BN-type reactor.
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