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Abstract
In accordance with Ref. (GOST R 58328-2018 “Pipelines of Nuclear Power Plants. Leak Before Break Concept”), 
NPPs with VVER-1200 reactors operate an acoustic leak monitoring system (ALMS) and a humidity leak monitoring 
system (HLMS), each performing the leak monitoring functions locally, independently of the other. The diagnostics 
results are conveyed to the upper level control system (LCS) to be further displayed for the main control room (MCR) 
operating personnel. There is also an integrated diagnostics system (IDS) intended to confirm the diagnosis and to up-
date the leak rate values and coordinates based on analyzing the leak monitoring system readings and I&C signals. The 
system measuring channel readings are composed of background noise, the source for which are processes on the part 
of the reactor facility’s key components and auxiliary systems, and the leak signal in response to the leak occurrence. 
A major factor that affects the capability of leak monitoring systems to detect the leak is the quality of the background 
noise filtering. A new efficient global noise filtering method is proposed for being used as part of the integrated diag-
nostics system (IDS).
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Introduction

The primary and secondary circuit acoustic leak monito-
ring systems (ALMS and ALMS-C2) are most sensitive 
to all of the events which occur in the reactor facility. In 
fact, a distinctive feature of a reactor facility as a source 

of acoustic noise is the complexity of the processes ta-
king place in it, involving a great deal of constrains hard 
to take into account. These are physically different pro-
cesses (mechanical, hydrodynamic, vibrational, impact, 
induced by vapor generation and bubbling, etc.). All this 
gives birth to a great variety of acoustic sources effective 
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in various frequency bands depending on the facility ope-
rating mode, the composition of the equipment in operati-
on, and many other factors. By amplitude, ambient noise 
is comparable with the useful leak signal which may lead 
to malfunctions of the diagnostic system.

An algorithm has therefore been developed in this stu-
dy which makes it possible to filter acoustic noise in the 
measuring channel readings and receive only useful leak 
signals in the course of acoustic measurements.

Process noise propagates over the metal surface and 
manifests itself in readings of most measuring channels 
depending, to a smaller or greater extent, on the sensor 
installation point. This allowed proposing a background 
noise filtering algorithm which is based on predicting the 
signal from the given measuring channel using a regres-
sion model built on the basis of the information redun-
dancy principle.

The stability of the proposed algorithm to different 
background acoustic bursts has been investigated.

The developed algorithm was demonstrated based on 
the ALMS acoustic signals while being also fully appli-
cable both to the HLMS system and similar secondary 
circuit systems.

Input
Recording of current information

The input for the integrated assessment of the reactor 
equipment integrity is information received from

•	 the ALMS and the HLMS (leak and probable leak 
detectors, leak rate values and coordinates, as well 
as values of the acoustic and humidity measuring 
channel (MC) signals for all piping segments moni-
tored by the system);

•	 I&C process and radiation monitoring systems (in-
ert gas reactivity sensor signals).

Data validity

Data validity monitoring is used to ensure that no invalid 
data is used for the calculation, and involves validity tes-
ting of the signal received.

Data validity is monitored by the connection status 
using the conventions adopted in the IDS architecture. 
Where the communication is lost for all channels, the IDS 
server sends out the last obtained value with the validity 
attribute “transmission channel failure”.

Validity monitoring based on the validity attributes 
of the received signal: the transmitted values of validity 
attributes from leak monitoring and I&C systems, in the 
event of being invalid, are not equal to 0x00 in the hexa-
decimal notation. More detailed information on the va-
lidity attributes is contained in the integrator documents 
and may vary among designs.

Data analysis and diagnosis 
formation
Computational and experimental justification of the 
algorithm for the ALMS

It is expected in the development of the algorithm under 
consideration that the reactor facility global noise is re-
corded identically by all of the acoustic system’s MCs. 
Since the cause for this noise is common for the MCs in 
each loop (which is confirmed by the signal cross corre-
lation coefficients the average value of which amounts to 
0.65), the signals in the presence of noise can be presen-
ted in a vector form:

	 s(t) = q(t) + d(t),	 (1)

where s(t) is the system MC readings; q(t) is the global 
noise; and d(t) is the local signal.

Therefore, the global noise filtering problem is reduced 
to finding the unknown function q(t) and deducing same 
from the known signal s(t). The values of any MC readings 
si(t) for the i-th segment can be expressed through the MC 
readings for the adjacent segments using a regression mo-
del. Such approach was proposed in (Skomorokhov et al. 
2010) where a group data handling method (GDHM) was 
used as the regression model. Two types of regression 
models were explored in the algorithm proposed below: 
a two-layer neural network based on which the nonlinear 
regression was built, and a linear Bayesian robust regres-
sion model (both are described hereinafter). As compared 
with (Skomorokhov et al. 2010), good results have been 
achieved in predicting the global acoustic noise thanks to 
using exactly the Bayesian robust regression model and 
Kalman residual signal filtering.

Further, we shall consider the principles of building re-
gression models separately for the primary circuit and the 
secondary circuit.

A very high correlation is observed in both circuits 
for nearly all MC signals, and the correlation coefficient 
represents a significant value. A regression was so built 
in the study for each MC signal in the particular reactor 
facility portion depending on the signals from all MCs in 
other loops (three loops), as well as on the signals from 
MCs in other segments in the same loop. As a result, 
there were four regressions obtained for each MC. This 
is quite enough to ensure the stability of the algorithm 
to a change in the state or to the failure of other MCs 
(predictors) since too many MCs may not fail during one 
life cycle.

Using the proposed grouping, one can describe the 
common part of the signal from each MC, q(t), as a func-
tion of the signals from other MCs in four different ways. 
Therefore, it is possible to predict the signal from any MC 
based on signals from the MCs in other loops (belonging 
to one pipeline type), as well as based on signals from the 
MCs in the same loop but in the segment in another room.
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Therefore, there were four dependences obtained for 
each signal. A neural network (Goodfellow et al. 2016; 
Nikolayenko et al. 2018; Chollet 2017) with one inlet 
layer, one hidden layer with a dimension of 30, and one 
outlet layer was used initially to determine these depen-
dences. Here

	 qi(t) = net ( (si (t), ∑j
 sj (t) ),	 (2)

where si (t) is the signal in the i-th MC for which the re-
gressions were built; sj (t) is the signals from MCs in ano-
ther loop or another sections based on which the regressi-
on was counted; qi(t) is the global noise vector for the i-th 
MC calculated using different regressions; and net is the 
trained neural network consisting of two fully connected 
layers with 30 neurons each, into which the values of the 
MC signals sj (t) are plugged.

This regression model is nonlinear and, therefore, even 
minor changes in the operation of the measuring channels 
may lead to major deviations in its application results. 
Fig. 1 presents the results of applying two different re-
gression models to the signal from the first acoustic MC 
for the life cycle that started after the preventive mainte-
nance as from 20.04.2018.

Shown in dark-grey is the regression obtained using 
formula (2) based on data for the period of 20 May 
through 20 June 2018 and propagated to all of the cur-
rently available data. It can be seen that it describes the 
original signal not in the best way possible. At the same 
time, the light-grey curve obtained for the period of 3 
May through 3 June 2018 describes pretty well the entire 
set of data. This curve was obtained as the result of using 
the linear robust Bayesian regression model (Kruschke 
2013; Cameron 2016; Barber 2017)

	 qi(t) = ∑
j 
βj sj (t) + ξ(t),	 (3)

where ξ(t) is the regression error having a Student distri-
bution.

Student distribution has thicker “tail areas” than nor-
mal distribution and it is therefore more stable to different 
bursts in data (Kruschke 2013). Unlike Gaussian distribu-
tion when the problem solution is reduced to finding the 
pseudoinverse matrix in the least square method, the pro-
blem of minimizing the negative log-likelihood from the 
Student distribution needs to be addressed directly here. 
The result however justifies such computational efforts.

All of the further analysis was based on regression mo-
del (3). Calculations have shown that it is enough to build 
the regression using model (3) for one day to reproduce in 
an acceptable manner the lifetime data.

Sharp peaks occur in acoustic MC signals during the 
reactor warm-up and cooldown, this being immediately 
connected with the RCP operation in the reactor primary 
circuit. These acoustic bursts caused by the RCP startup 
at a low pressure in the circuit are highly significant (they 
have a value of about 5000 μV). With such signals, the 
acoustic sensor response turns heavily nonlinear, and it 
becomes impossible to find out if there is a leak. The thing 
is that the integral signal that comes from acoustic MCs 
is, in fact, a dispersion of the actual signal and, therefo-
re, the signal from the leak is quadratically added to the 
background signal, that is

	 Utot
2 = Uback

2 + Uleak
2,	 (4)

where Uback is the background signal; Uleak is the leak sig-
nal; and Utot is the total signal.

The obtained regression dependences for each MC 
were used to calculate the values of acoustic signals with 
the filtered global noise d

i

j(t) = si (t) – q
i
j(t), where i is the 

MC number; and j is the regression dependence number. 
Therefore, if there is a leak in any piping segment, two 
different situations are possible.

•	 The leak occurred in the segment with the MC un-
der consideration. Then all values di

j (t) will vary 
according to the noise caused by the leakage, and 

Figure 1. Application of regression models to the description of the signal from acoustic MC 1 for the 2018–2019 life cycle.
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di(t) =  | min(i) di
j(t)  | is the sought-after leak signal 

with the filtered global noise which is compared 
with the given setpoints.

•	 The leak occurred in another segment, j. Then the 
regression dependence q

i
j(t) for given MC i will be 

wrong, but the others, q
i
k(t), where k ≠ j, will give 

correct values, and the expression di(t) = | min(k) 
d

i
k(t) | will remain valid, and the value di(t) for the 

i-th MC will not contain the leak signal. It should 
be noted here that the more regressions are consid-
ered, the more reliable will be the result. Therefore, 
if regressions are considered not cumulatively from 
all MCs in the adjoining loops but from all MCs in 
each segment in all loops, we shall then have 11 re-
gressions for each MC in the loop.

The resultant quantity di(t) is an observed random sig-
nal which contains a measurement error, as well as a glo-
bal noise filtering (regression dependence) error. In order 
to obtain the optimum signal from this, we shall consider 
the problem at hand in a state space model where the op-
timum solution is achieved thanks to the use of a Kalman 
filter (Najim 2008; Durbin and Koopman 2012; Haykin 
2014; Grewal and Andrews 2015).

It is assumed in the system model that the actual hid-
den state at the time t+1 results from the state at the time 
t according to the state equation

	 x(t+1) = A·x(t) + ε(t),	 (5)

where A is the state space matrix; and ε is the state space 
error vector, and the measurement vector di is connected 
with the state vector of the equation system

	 di(t) = C·x(t) + ω(t),	 (6)

where C is the measurement matrix; and ω is the measu-
rement error vector.

The Kalman filter iteration is divided into two phases: 
prediction and registration of observations. The predicti-

on phase uses the state calculated at the previous step for 
obtaining the evaluated state at the current step through 
the system model. At the observation registration phase, 
information on the measurements performed at the cur-
rent step is used to update information on the system state, 
which, as a result, makes this information more accurate. 
Kalman filter is the best way to make the signal obtained 
by measurements in a linear system with Gaussian noise 
as close to the actual value as possible.

Fig. 2 presents diagrams of the initial signals si(t) and 
the signals di(t) filtered of global noise using regressions 
and optimized by the Kalman filter. Evidently, the fre-
quency of false responses with signals cleared of global 
noise decreases considerably both for the acoustic system 
and the humidity system.

Let us consider how the quantity di(t) will change 
in the j-th piping segment if the acoustic MC fails el-
sewhere in another segment. In this case, the regressi-
on dependence of global noise for acoustic MCs in the 
segment j on the segment with the failed MCs will be 
wrong. However, as a result of the operation of the al-
gorithm proposed above, the resultant quantity di(t) will 
not differ greatly from the case when all acoustic MCs in 
all segments operated normally. The result of the consi-
dered situation is presented in Fig. 3.

Fig. 3a shows a standard situation, and the readings 
in Fig. 3b for acoustic MC 32 in the U-shaped bend in 
loop 4 have been artificially changed by 500 μV. It can 
be seen that the quantities di(t) obtained for this MC ba-
sed on four and three regressions do not practically dif-
fer. Further, it is planned to consider the dependence of 
the signal from each MC not simply on the signals from 
MCs in other loops but from MCs in other segments. 
We shall have then 11 regressions instead of four (since 
there are three segments in each loop) which will make 
it possible for the algorithm to achieve a much greater 
reliability and stability of results in the event of the MC 
failure in other segments.

We shall note that it is possible to filter global noise 
exactly in the same way for the HLMS as well. Absolute 

Figure 2. Signal quantities si(t) and di(t) for some of the acoustic MCs.
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humidity is compared here with the threshold value (the 
threshold value is 0.375 kg/m3). It is even easier to filter 
global noise in the event of a humidity system than for 
an acoustic system since the values of the signals from 
the HLMS MCs are rather smooth and do not have bursts 
throughout the life cycle.

Leak simulation

Let us show how the enhancement of signals from acous-
tic and humidity MCs is interpreted by the integrated di-
agnostics system (IDS). To this end, signals, which chan-
ge smoothly from 0 to 300 μV and simulate the leak in 
this pipeline segment, were added to the current readings 
of the acoustic MCs in the cold leg of loop 1 (the MC 
numbers are 1, 2, and 3).

Since there had not been leaks from the circuit com-
ponents at unit 6 with the VVER-1200 reactor at the 
Novovoronezh NPP the experimental data from which 
was used in this study, model data was used obtained 
based on the ALMS experimental justification at a de-
dicated test bench, as well as based on the available 
data on leaks with rated parameters of the operating 
reactor facilities.

The initial ALMS specifications require that a leak of 
3.9 l per min and more should be detected. Therefore, ba-
sed on the ALMS experimental justification results, the 
value of the acoustic signal sensitivity to leakage was de-
termined as being equal to 55 μV per liter per minute. 
Proceeding from this, the threshold leak acoustic signal 
has been shown to have a value of 200 μV.

As an example, Fig. 4a shows how the quantity d1(t) 
behaves for the given pipeline segment, and Fig. 4b shows 
the behavior of the signal from MC 14 and of the quantity 
d14(t) in the segment, for which no leak is simulated, but 
the segment with a leak takes part in the regression analy-
sis of the MC signal values.

We can see that there is a leak only in the segment, for 
which it is simulated, though the regression for the lea-
king segment (for loop 1 in Fig. 4b) is wrong. Therefore, 
as a result of the algorithm operation, a leak is observed 
only in the segment in which it is simulated.

Conclusions

A reliable and stable algorithm has been developed for the 
integrated analysis of the VVER reactor pipeline leakage. 
It is based on filtering global noises in the MC signals and 

Figure 3. Signals, regressions and di(t): a) for the first acoustic MC in a standard situation; b) in the event of failed MC 32 (loop 4).
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on flattening the results obtained in a state space model 
using Kalman filtering.

To this end, a robust Bayesian model of linear regres-
sion was implemented which makes it possible to predict 
global noise for the entire life cycle with respect to a com-
paratively short interval of data at the cycle beginning. 
We shall note that the nonlinear regression model has tur-
ned out to be unstable to local background bursts.

A sequential Kalman filter, which is the best way to eva-
luate the actual signal in a system with additive Gaussian 
noise, was applied further to the obtained result.

The algorithm obtained makes it possible to improve 
considerably the reliability of the reactor pipeline leak de-
tection, to improve the leak sensitivity, and to reduce the 
number of false alarms in the operation of the integrated 
leak analysis module in the IDS.

References
	� Barber D (2017) Bayesian Reasoning and Machine Learning. Cam-

bridge University Press, 666 pp.
	� Cameron D-P (2016) Bayesian Methods for Hackers: Probabilistic 

Programming and Bayesian Inference. Addison-Wesley Data and 
Analytics Series, 226 pp.

	� Chollet F (2017) Deep Learning with Python: Second Edition. Man-
ning Publications, 384 pp.

	� Durbin J, Koopman SJ (2012) Time Series Analysis by State Space Meth-
ods: Second Edition. Oxford Statistical Science Series. OUP Oxford, 
253 pp. https://doi.org/10.1093/acprof:oso/9780199641178.001.0001

	� Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT 
Press, 787 pp.

	� GOST R 58328-2018. Pipelines of Nuclear Power Plants. Leak 
Before Break Concept. https://files.stroyinf.ru/Data/705/70505.pdf 
[Accessed on 05.05.2020] [in Russian]

	� Grewal MS and Andrews AP (2015) Kalman Filtering: Fourth edi-
tion. Wiley, 617 pр.

	� Haykin S (2014) Adaptive Filter Theory: Fifth edition. Pearson, 907 pp.
	� Kruschke JK (2013) Bayesian estimation supersedes the T test. Jour-

nal of Experimental Psychology: General, 142(2): 573–603. https://
doi.org/10.1037/a0029146

	� Najim M (2008) Modeling Estimation and Optimal Fil-
tering in Signal Processing. Wiley, 408 pр. https://doi.
org/10.1002/9780470611104

	� Nikolayenko S, Kadurin A, Arkhangelskaya Ye (2018) Deep Learn-
ing. St. Petersburg, Piter Publ., 480 pp. [in Russian]

	� Skomorokhov AO, Kudryaev AA, Morozov SA (2010) Neural 
network models of the VVER piping leak signal filtering and di-
agnostics. Izvestiya vuzov. Yadernaya energetika 4: 72–80. [in 
Russian]

Figure 4. Quantities δi(t): a) for the pipeline segment with leakage; b) for the pipeline segment without leakage.

https://doi.org/10.1093/acprof:oso/9780199641178.001.0001
https://files.stroyinf.ru/Data/705/70505.pdf
https://doi.org/10.1037/a0029146
https://doi.org/10.1037/a0029146
https://doi.org/10.1002/9780470611104
https://doi.org/10.1002/9780470611104

	Efficient method for the global noise filtering in measuring channels of the VVER NPP leak monitoring systems*
	Abstract
	Introduction
	Input
	Recording of current information

	Data validity
	Data analysis and diagnosis formation
	Computational and experimental justification of the algorithm for the ALMS

	Leak simulation
	Conclusions
	References

