
Speeding up the ODETTA code for solving particle
transport problems*

Anastasiya V. Shoshina1, Viktor I. Belousov2

1 National Research Nuclear University MEPhI, 31 Kashirskoye shosse, Moscow, 115409, Russia
2 NRC Kurchatov Institute, 1 Akademika Kurchatova Sq., Moscow, 123182, Russia

Corresponding author: Viktor I. Belousov (Danilenko_L@bsu.edu.ru)

Academic editor: Georgy Tikhomirov ♦ Received 17 February 2020 ♦ Accepted 6 December 2020 ♦ Published 24 March 2021

Citation: Shoshina AV, Belousov VI (2021) Speeding up the ODETTA code for solving particle transport problems. Nuclear Energy
and Technology 7(1): 15–20. https://doi.org/10.3897/nucet.7.64365

Abstract
Mathematical simulation of fast neutron reactors requires high-precision calculations of protection problems based on
unstructured meshes. The paper considers and analyzes a parallel version of the ODETTA code (Belousov et al. 2019)
with the use of the MPI (Message Passing Interface) library technology (Knyazeva et al. 2006). The code is designed
for numerical simulation of neutronic processes in shielding compositions of fast neutron lead cooled reactor plants
in normal operating modes, and can be used to calculate the radiation conditions of using structural components and
equipment of nuclear power facilities which are assumed to be the sources of and/or exposed to ionizing radiation
during their safety justification. The operation of the generated code is compared against the previous version. The MPI-
based development of the ODETTA code’s algorithmic part is described. Peculiarities and specific features of the code
parallelization are presented, the code modification is given, and respective algorithms are considered. The structure of
the ODETTA code based on the MPI is described in brief. The results of using the ODETTA code’s serial and parallel
versions in OS Linux (Kostromin 2012) for NRNU MEPhI’s HPC cluster are provided (Savchenko et al. 2020). A com-
parative analysis is presented for two code implementation options in terms of speed and accuracy of results when using
two different clusters and different numbers of nodes for these. Peculiarities of cluster-based calculations are noted.

Keywords
Parallel programming, MPI, ODETTA code, finite element method, radiation safety, HPC cluster

Introduction

The purpose of the study is to use parallel computations
for solving problems of neutron and gamma quanta trans-
port in a multi-group SnPm approximation by the finite
element method based on unstructured tetrahedral mes-
hes, including mesh data handling. The study is conducted
as part of an investigation by the Nuclear Safety Institute
of the Russian Academy of Sciences (IBRAE) at MEPhI’s

computation center. Extremely complex problems are in-
volved in mathematical simulation of fast neutron reactors.
It is exactly the solution of such problems that requires
high-precision mass calculations of protection problems
based on unstructured meshes. An analog is the ATTILA
code (McGhee et al. 2007) which uses the discontinuous
finite element method (DFEM) to solve transport equati-
ons based on spatial meshes consisting of tetrahedral and
hexagonal finite elements with nonplanar faces.

Copyright Shoshina AV, Belousov VI. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Nuclear Energy and Technology 7(1): 15–20
DOI 10.3897/nucet.7.64365

Research Article

* Russian text published: Izvestiya vuzov. Yadernaya Energetika (ISSN 0204-3327), 2020, n. 4, pp. 130–141.

mailto:Danilenko_L@bsu.edu.ru
https://doi.org/10.3897/nucet.7.64365

Shoshina AV & Belousov VI: Speeding up the ODETTA code for solving particle transport problems16

Peculiarities of the ODETTA code

Mathematical simulation of fast neutron reactors requires
highly precise calculations of protection problems using
unstructured meshes. The ODETTA code in the neutronic

calculation implementation module simulates the solution of
the transport equation by the finite element method (FEM)
based on unstructured tetrahedral meshes in a discrete ordi-
nate method approximation (Sychugova and Seleznev 2014).

With the use of discrete ordinates, the transport equa-
tion is written as

where the group index number g is omitted, and the index
m (m = 1, 2, …, M) is matched by the discrete direction Ωm
= (mm, hm, xm) out of a quadrature set (with equal weights
ESn or Chebyshev-Legendre’s CLn), the unit sphere sur-
face value being measured in 4π, i.e. Σωm = 1. FEM for-
mulas are developed by approximating the transport equa-
tion according to Galerkin using the weighted residuals
method. The equation includes the full macroscopic inter-
action cross-section ΣT and the Qm function, the right-hand
part of the transport equation depending on the solution of
Ψm. The right-hand part includes the source of intergroup
and intragroup transitions, the source of fissions, and the
given internal source. Zero values of the angular flow are
given on the boundary G of the considered 3D region for
directions inside of the region or the reflection condition.
This results in a boundary problem for solving the equati-
on of particle transport in a convex 3D region.

The anisotropic scattering is represented by a series
expansion in associated Legendre functions up to the fifth
order. The spatial rebalance method is used to accelerate
the convergence of internal iterations. The code has been
developed in Fortran (standard Fortran 90 and later) us-
ing OpenMP parallelizing. The ODETTA code operation
steps are as follows:

• preparation of mesh data;
• preparation of group macroscopic cross-sections;
• formation of the radiation source;
• neutronic calculation;
• calculation of functionals.

The SALOME code is used to handle CAD models and
unstructured meshes (SALOME 2020). The CONSYST
code with the BNAB-RF library is used to prepare group
constants (Manturov 2017). The SIEGFRIED preproc-
essor developed at IBRAE specifically for the ODETTA
code, including such modules as Readconst (the interface
between the NISN multigroup constant storage format and
the ODETTA code internal format), Source (formation of
the radiation source in the original geometry and interpola-
tion in the unstructured mesh nodes), MKE3D (neutronic
calculation module), and RECONST (post-processing, cal-
culation of functionals), is used to ensure that the user can
handle the ODETTA code in the most comfortable way.

The solution obtained after the ODETTA simulation
can be visualized by a 3D graphic plotter, e.g., the VisIt
program (About VisIt 2020)).

The spatial region under consideration is decomposed
into a finite number of elements with the fixed number of
endpoints referred to as nodes. The accuracy of the results
depends greatly on the decomposition quality. Tetrahe-
drons are used as elements for the calculation. They have
common nodal points and, taken together, approximate
the region shape. Normally, decomposition is started from
the region boundaries so that to obtain as accurate approx-
imation of the region shape as possible (Fig. 1).

The considered region and the tetrahedrons can be de-
composed by directions. The unit sphere of directions (an
angular variable mesh) is decomposed into eight octants
(Fig. 2a). Since calculation in each of these can be done
independently, the use of parallel calculations will speed
up noticeably the program execution. This forms the basis

(, ,)· (, ,) (, ,),m m m
m m m T m mx y z x y z Q x y z

x y z
µ η ξ∂Ψ ∂Ψ ∂Ψ

+ + +Σ Ψ =
∂ ∂ ∂

Figure 1. An example of the region decomposition into a finite
number of tetrahedrons.

Nuclear Energy and Technology 7(1): 15–20 17

for using the MPI in the neutronic calculation module of
the ODETTA code.

Decomposition by directions (Fig. 2b) is used for the cal-
culation in each octant – this is illustrated with an example
of the first octant. Such space fragmentation is required to
speed up the ODETTA neutronic calculation using OpenMP
(OpenMP 2020). Decomposing a unit sphere of directions
into octants and the independence of computations in each
of these enable calculations in parallel and independently
for each direction of the given space using the MPI. Thus,
parallelizing through the MPI was used between octants,
and that through OpenMP was used inside of octants.

Developing the algorithmic part
of the MPI application for the
ODETTA code

The growing interest in parallel programming these days is
explained by the transition to mass production of multico-
re architectures (Nemnyugin 2007). The МРI technology
is a set of utilities and library functions (for such langua-
ges as С/С++ (Pavlovskaya 2003) and Fortran (Ryzhikov
2000, Barteniev 2000, Chapman Stephen 2018, Shteren-
likht 2018, Building Programs with GNU 2020)) which
make it possible to create and start applications operating
in parallel computation units of a different nature.

The ODETTA code uses a Fortran source code like
most of the codes currently used in nuclear industry.
Many of them cannot use more than one process, so they
require conversion to parallel computations to speed up
their operation. There are two ways to do this.

The first one is to use a compiler in which case the
developer needs to indicate the code region where exactly
parallelizing should be used inside of the program text.
Such approach is used in the OpenMP system but is pos-
sible only in shared memory systems. This parallelizing
option was introduced earlier in the ODETTA code.

The second approach suggests that the developer as
such specifies the distribution of and communication
among processes in the program code. The second ap-

proach was used in the new version of the ODETTA
code. This section describes the alterations made to the
ODETTA source code for its new implementation with
the MPI technology.

Decomposing the space into eight octants, the calcula-
tion in which can be done independently, makes it possi-
ble to use several computation nodes to optimize the code
runtime. The ODETTA calculation algorithm is executed
in parallel, and, theoretically, the more nodes are used per
cluster, the shorter is the problem simulation time. The
program’s source code used one computation node, and
the octant calculation was done in series.

The resultant program was tested using two and four
nodes of MEPhI’s cluster, though the eight-node cluster
was assumed to be the best option. The use of the MPI cuts
the calculation time considerably since all computations
are done in parallel. Different numbers of nodes and their
respective distributions of processes are shown in Fig. 3.

Figure 2. A unit sphere of directions decomposed into octants (a); a unit sphere decomposed by directions in the first octant (b).

Figure 3. Distribution of octants by computation nodes: a) two
nodes; b) four nodes; c) eight nodes.

Shoshina AV & Belousov VI: Speeding up the ODETTA code for solving particle transport problems18

Computations were supposed to be done using eight
octants, so a maximum of eight processes, distributed by
the nodes requested on the cluster, were used for the code
implementation. The parallel computation capability is
expected to provide a distinct advantage in terms of the
calculation speed.

Directives controlling the compiler operation were en-
gaged in the ODETTA code implementation using the MPI,
this making it possible to extend the code capabilities.

Design and implementation

The final ODETTA algorithm using the MPI is represen-
ted by a block diagram with standard symbols commonly
used in structured programming, including oval (the be-
ginning or end of the considered program unit), rectangle
(operations block), hexagon (the algorithm cycle contai-
ning the “body” of repetitive operations, one input, and
one output (Fig. 4).

The MPI use blocks in the implemented algorithm are
highlighted with a grey background and an White Italic
text. Changes pertain largely to the use of data in the in-
teraction between parallel processes.

Results

A radiation safety problem, which modeled a fuel assem-
bly of the MOX-1000 fast neutron reactor benchmark mo-
del with mixed oxide uranium-plutonium fuel and sodium

coolant (NEA/NSC/R(2015)9 2016) was used as the test
problem for the ODETTA code. The assembly was with-
drawn after staying in the operating reactor and put into
a cylindrical steel container (shell) which was then filled
with lead. The common calculation simulation elements
are shown in Table 1.

It was assumed for simplifying the model calculation
that the cylindrical container shell was made of HT-9
steel. SnPm approximation with the parameters n = 12 and
m = 3 was used for the problem simulation which means
that there is a total of 288 directions for the unit sphere or
36 directions per one octant (CL12 Chebyshev-Legendre
quadrature). The number of energy groups for neutrons is
299 and of those for gamma quanta is 127. The number of
tetrahedrons in the decomposition mesh is 132883.

The software for the ODETTA code was implement-
ed at MEPhI’s high-performance computation center the
clusters of which are Linux-based. The remote computer
is controlled through the command line and using the SSH
protocol through the Putty program (Putty Documentation
2020). Basov and Cherenkov clusters (Savchenko et al.
2020) with different numbers of nodes were used to calcu-
late the radiation safety test problem using the ODETTA
code. The results are presented in Tables 2 and 3.

The speed up Sp = t1/tp and the efficiency Ep = Sp/p for
the parallel algorithms (t1 is the algorithm execution time
for one process, tp is the algorithm execution time for a
system of p processes) are determined depending on the
number of processes.

The radiation safety test problem was calculated us-
ing computational nodes numbering one to four, the use
of one node being equivalent to the problem simulation
without the use of the MPI, and the number of OpenMP
processes for each process was equal to 32, that is, the
maximum one for one node. Due to the cluster overload,

Table 1. Common calculation pattern using the ODETTA code

Stage Simulated
item

Problem
solved

Input data Output
data

Calculation
of shielding

Fuel assembly
in a steel
container

(shell) filled
with lead

Non-
homogeneous
problem with
given source

299-group source of
neutrons, 127-group

photon source,
geometrical and

physical parameters

Full neutron
flux, full
gamma

quanta flux,
calculation

time
Comparison
of results

ODETTA with MPI and without MPI

Table 2. Basov-cluster implementation of ODETTA code

Number of processes 1 2 3 4
Time, h 10.036 8.922 10.824 9.372
Speed up – 1.125 0.927 1.071
Efficiency – 0.562 0.309 0.268

Table 3. Cherenkov-cluster implementation of ODETTA code

Number of processes 1 2 3 4
Time, h 13.435 8.809 12.103 9.579
Speed up – 1.525 1.110 1.403
Efficiency – 0.763 0.370 0.351Figure 4. MPI-based ODETTA diagram.

Nuclear Energy and Technology 7(1): 15–20 19

there was no eight-node computation, which had the
maximum efficiency of problem solving in terms of time.
Since the clusters use different systems of processors, it
can be noted that the problem runtimes are different with
the best one being in the event of the Basov cluster, as the
program runtime with four nodes is longer than with two
due to the specific data transmission between the cluster
nodes. The ODETTA algorithm with the MPI requires
exchange of large data arrays between the cluster nodes,
so data transmission leads to an additional calculation de-
lay. An additional speed up was however expected with
eight cluster nodes thanks to processors which would
minimize the costs of the node data exchange thanks to
their speed.

A comparative analysis for the accuracy of comput-
ing full fluxes of particles is presented in Tables 4 and 5
where the calculation with one node, that is, without the
use of the MPI, was assumed to be the reference result.
The tables also present the maximum estimated relative
error dmax and the root-mean-square deviation s. The fol-
lowing relations were used to compute the errors

δmax = max(δ1, δ2, ..., δn), δi = 1 – | xi /x
*
i | = | Δxi / x

*
i |,

where n is the number of the solution points; xi is the cal-
culated solution; x*

i is the reference solution; and Δxi = xi
– x*

i. The root-mean-square deviation from the reference
solution is

2

1

1
1

n

i
i

x
n

σ
=

= ∆
− ∑ .

The relative error during the calculations with two and
four nodes do not exceed 0.00155% when the Basov cluster
is used and 0.00204% when the Cherenkov cluster is used,
this indicating a minor deviation from the reference result.

The best option for obtaining the ODETTA clus-
ter-based computation results is the use of one node with
two MPI processors and 16 OpenMP processors installed
for each process. This is possibly explained by the pecu-
liarities of the cluster node structure which allow the pro-
gram parallelizing algorithms to achieve the maximum

speed up in terms of the calculation rate. The advantages
of this computation option are shown in Tables 6 and 7.

The relative error during the calculations with one node
using two MPI processors does not exceed 0.00134%
when the Basov cluster is used and 0.00196% when the
Cherenkov cluster is used, this indicating high precision
of the obtained results.

Conclusion

The MPI technology was used to speed up the ODETTA
code for solving the neutron and gamma quanta transport
problem in a multigroup SnPm approximation by the fi-
nite element method based on unstructured tetrahedron
meshes. The results of the source code modification were
tested using a radiation safety problem as an example.

The program modifications were tested using a radia-
tion safety problem (Bereznev et al. 2017). To check the
accuracy of the obtained results, these were compared
with the results of the ODETTA serial version which were
assumed to be standard. The deviation from the standard
was about 0.002% which indicates that the MPI paral-
lelizing algorithm has been implemented correctly.

When analyzing the starts of computations using
different numbers of the MPI nodes and 32 maximally
possible OpenMP processes, a conclusion can be made
that the most efficient distribution was that by two Cher-
enkov cluster nodes where the speed up was about 1.52.
The calculation was slower with four computation nodes
used than with two, this being explained by the peculi-
arities of the algorithm and the cluster architecture, that
is, using the Hyper-threading technology (Savchenko et
al. 2020) for the Basov and the Cherenkov, which makes
it possible to use two computation threads in one physi-
cal processor core. The increase in the efficiency varies
among applications. The execution of some programs
can slow down as was the case in this study. A possible
reason is connected with the “system of repetitions” of
the Xeon processors which occupies the required com-
putational resources, leading to the idle state of other
computation threads.

Table 4. Comparison based on calculation results for full parti-
cle fluxes with the Basov cluster

Number of processes 2 3 4
Neutrons δmax, % 1.26∙10–3 9.31∙10–3 1.55∙10–3

σ 4.52∙105 1.48∙105 8.21E∙105

Gamma quanta δmax, % 1.49∙10–3 1.07∙10–3 1.45∙10–3

σ 2.39∙104 7.57∙103 3.92∙104

Table 5. Comparison based on calculation results for full parti-
cle fluxes with the Cherenkov cluster

Number of processes 2 3 4
Neutrons δmax, % 2.03∙10–3 1.48∙10–3 1.49∙10–3

σ 1.82∙106 1.56∙106 1.99∙106

Gamma quanta δmax, % 2.04∙10–3 1.47∙10–3 1.50∙10–3

σ 1.10∙105 7.84∙104 1.09∙105

Table 6. ODETTA implementation using one node with two
MPI processors

Cluster Basov Cherenkov
Time, h 6.951 7.029
Speed up 1.444 1.911
Efficiency 0.722 0.956

Table 7. ODETTA computation characteristics using one node
with two MPI processors

Cluster Basov Cherenkov
Neutrons δmax, % 1.34∙10–3 1.80∙10–3

σ 3.16∙105 1.75∙106

Gamma quanta δmax, % 1.25∙10–3 1.96∙10–3

σ 1.69∙104 9.65∙104

Shoshina AV & Belousov VI: Speeding up the ODETTA code for solving particle transport problems20

As the result, the use of one node with two MPI pro-
cessors and 16 OpenMP processors was the best option
for the ODETTA cluster operation. The maximum speed
up achieved with the Cherenkov cluster was 1.911 (nearly
double). The maximum time gain amounted so to about
48%. In turn, the minimum time gain was about 30% as
compared even with the best one-processor calculation.

It should be additionally noted that the ODETTA algo-
rithm with the use of the MPI requires large arrays of data
to be exchanged between the cluster nodes, so the trans-
mission of data led to a major calculation delay. The use of
several processors has a negative impact on speed due to
an extra interprocessor interaction, but the calculation time
remains much smaller as compared with the serial version.

References
 � About VisIt (2020) VisIt Home. https://wci.llnl.gov/simulation/com-

puter-codes/visit [accessed Feb 10, 2020]
 � Barteniev OV (2000) Modern Fortran. 3rd ed. Dialog MIFI Publ.,

Moscow, 449 pp. [in Russian]
 � Belousov VI, Bereznev VP, Seleznev YeF (2019) ODETTA com-

putational code for solving neutron and gamma quanta transport
problems in a multigroup SnPm approximation by the finite element
method based on unstructured tetrahedral meshes, including mesh
data handling. Ver. 2.1. (ODETTA). Computer Program Validation
Certificate, Reg. No. 497, Dec. 19. FBU NTTs YaRB Publ., Moscow,
6 pp. [in Russian]

 � Bereznev VP, Belousov VI, Grushin NA, Seleznev EF, Sychugo-
va EP (2017) New neutronic codes based on the discrete ordinates
method using methods of finite differences and finite elements. In:
Proceedings of the International Conference on Fast Reactors and
Related Fuel Cycles: Next Generation Nuclear Systems for Sustain-
able Development (FR17). Paper CN-195. Yekaterinburg. ROSA-
TOM Publ., 10 pp.

 � Building Programs with GNU (2020) Building Programs with GNU
Make. http://coderway.ru/cpp/make [accessed Feb 10, 2020] [in
Russian]

 � Chapman Stephen J (2018) Fortran for Scientists and Engineers. 4th
edn. BAE Systems Australia, 1049 pp.

 � Knyazeva MA, Molchanova LA, Tarasov GV (2006) Parallel Pro-
gramming. Dalnevostoch-ny Universitet Publ., Vladivostok, 61 pp.
[in Russian]

 � Kostromin VA (2012) Linux Tutorial for User. BKhV-Peterburg
Publ., St. Petersburg, 672 pp. [in Russian]

 � Manturov GN (2017) Procedural Constant and Software for Neu-
tronic Calculations of Fast Reactors and Estimation of Computa-
tional Prediction Errors. Dr. Tech. Sci. Diss. SSC RF-IPPE Publ.,
Obninsk, 202 pp. [in Russian]

 � McGhee JM, Wareing TA, Barnett DA (2007) Attila User’s Manual.
Transpire Inc., Jan 15, 1077 pp.

 � NEA/NSC/R(2015)9 (2016) Nuclear Science Committee. Bench-
mark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores
with Various Fuel Types and Core Sizes, 25-Feb. https://www.oecd-
nea.org/science/docs/2015/nsc-r2015-9.pdf [accessed Feb 10, 2020]

 � Nemnyugin SA (2007) Programming Tools for Multiprocessor Com-
puting Systems. Intel Multicore Curriculum Initiative. St. Petersburg
State University Publ., St. Petersburg, 88 pp. [in Russian]

 � OpenMP (2020) OpenMP Application Program Interface. http://www.
openmp.org/mp-documents/OpenMP4.0.0.pdf [accessed Feb 10, 2020]

 � Pavlovskaya TA (2003) C/C++. High-Level Language Program-
ming. Piter Publ., St. Petersburg, 461 pp. [in Russian]

 � Putty Documentation (2020) Putty Documentation. https://putty.org.
ru/docs.html [accessed Feb 10, 2020] [in Russian]

 � Ryzhikov YuI (2000) Fortran Powerstation Programming for Engi-
neers. A Practical Guide. Korona-Print Publ., St. Petersburg, 161 pp.
[in Russian]

 � SALOME (2020) SALOME – The Open Source Integration Plat-
form for Numerical Simulation. https://www.salome-platform.org
[accessed Feb 10, 2020]

 � Savchenko AV, Anikeyev AA, Okunev DYu (2020) High-Perfor-
mance Computing Center of NRNU MEPhI. User Manual. NRNU
MEPhI Publ., Moscow, 24 pp. https://ut.mephi.ru/pdf/projects/hpc/
userguide.pdf [accessed Feb 10, 2020] [in Russian]

 � Shterenlikht A (2018) Parallel Programming with Fortran 2008 and
2018 Coarrays. Mech. Eng. Dept., The University of Bristol, Bristol
BS8 1TR, 27 pp.

 � Sychugova YeP, Seleznev YeF (2014) The Finite Element Method
for Solving the Transport Equation based on Unstructured Tetra-
hedral Meshes. Preprint No. IBRAE-2014-03. IBRAE RAN Publ.,
Moscow, 21 pp. [in Russian]

https://wci.llnl.gov/simulation/computer-codes/visit
https://wci.llnl.gov/simulation/computer-codes/visit
http://coderway.ru/cpp/make
https://www.oecd-nea.org/science/docs/2015/nsc-r2015-9.pdf
https://www.oecd-nea.org/science/docs/2015/nsc-r2015-9.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://putty.org.ru/docs.html
https://putty.org.ru/docs.html
https://www.salome-platform.org
https://ut.mephi.ru/pdf/projects/hpc/userguide.pdf
https://ut.mephi.ru/pdf/projects/hpc/userguide.pdf

	Speeding up the ODETTA code for solving particle transport problems*
	Abstract
	Introduction
	Peculiarities of the ODETTA code
	Developing the algorithmic part of the MPI application for the ODETTA code
	Design and implementation
	Results
	Conclusion
	References

