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Abstract
The main tasks of diagnostics at nuclear power plants are detection, localization, diagnosis, and prognosis of the devel-
opment of malfunctions. Analytical algorithms of varying degrees of complexity are used to solve these tasks. Many 
of these algorithms require pre-processed input data for high-quality and efficient operation. The pre-processing stage 
can help to reduce the volume of the analyzed data, generate additional informative diagnostic features, find complex 
dependencies and hidden patterns, discard uninformative source signals and remove noise. Finally, it can produce an 
improvement in detection, localization and prognosis quality. This overview briefly describes the data collected at 
nuclear power plants and provides methods for their preliminary processing. The pre-processing techniques are system-
atized according to the tasks performed. Their advantages and disadvantages are presented and the requirements for the 
initial raw data are considered. The references include both fundamental scientific works and applied industrial research 
on the methods applied. The paper also indicates the mechanisms for applying the methods of signal pre-processing 
in real-time. The overview of the data pre-processing methods in application to nuclear power plants is obtained, their 
classification and characteristics are given, and the comparative analysis of the methods is presented.

Keywords
advanced analytics, data analysis, data pre-processing, diagnostics, NPP, machine learning, raw data

Introduction

Modern nuclear power plants (NPP) generate large 
amounts of data. The methods of intellectual analysis 
make it possible to apply the generated data for the pur-
pose of detecting malfunctions, determining the operating 
lifetime of equipment and solving other urgent problems 
in NPP operation.

Such data contain valuable information about incipi-
ent faults, but it can be extremely difficult to use the so-
called raw or unprocessed data in analytical algorithms. 
The algorithms of fault detection, pattern recognition, 
fault localization, prognosis of fault development, etc. re-
quire signal pre-processing for high-quality output. The 
pre-processing techniques include both machine learning 
methods (Bishop 2006, Hastie et al. 2009) and classical 
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signal processing methods (Chiang et al. 2001, Sergien-
ko 2011). Modern diagnostic systems at NPPs use such 
pre-processing methods as spectral analysis, filtering, 
moving averages, generation of diagnostic features from 
recorded signals, and others. The academic literature on 
technical diagnostics has described the application of such 
methods for NPPs (Arkadov et al. 2004, 2019, 2020).

The pre-processing stage is very important in detection 
algorithms. Its relevance seems rather evident since it is 
an integral part to the overwhelming majority of the meth-
ods mentioned in this overview and other reviews of data 
processing methods (Venkatasubramanian et al. 2003a, 
2003b, Qin 2009, Ma and Jiang 2011, Si et al. 2011, An 
et al. 2013, Dai and Gao 2013, Patel and Shah 2018). In 
Fig. 1 we propose the taxonomy of data pre-processing 
methods, which summarizes many such works.

Fig. 2 shows the flow diagram of equipment diagnos-
tics according to GOST R ISO 13381-1-2016 (2017).

The main path of the equipment diagnostics is the se-
quential execution of all stages, starting with data acquisi-
tion, followed by pre-processing, fault detection, localiza-
tion, diagnosis or root cause identification and prognosis 
of how the detected faults may develop. The dashed line 
indicates an auxiliary path of equipment diagnostics, in 
which the stages do not follow from one another. The aux-
iliary path can be taken either in deferred analysis when 
any stage is considered separately from the others; or 
when using the original data in its unprocessed form or 
adding new data at any stage; or in other pre-processing 
methods to prepare the original data and thus ensure algo-
rithm operation.

It is necessary here to clarify some of the terms used 
in this article. The offline mode will refer to working with 
the full data sample; in this case full realization of the sig-

nals is available for analysis. The online mode will mean 
working in real time; in this case, the full data sample is 
unavailable for analysis, data objects (vectors) can arrive 
one after another as streaming data – hence, the analysis is 
called the pointwise analysis – or there can be a buffer with 
batch data – hence the analysis is called the batch analysis.

Supervised learning refers to tasks in which all the op-
erating modes of equipment are known and the data class-
es are marked; in other words, the data on both the normal 
mode of operation and the abnormal mode of operation 
(preferably also on all types of abnormalities) are availa-
ble. Semi-supervised learning refers to tasks in which only 
the data on normal mode of operation is available; this 
means that only the part of data describing normal opera-
tion of equipment has a class mark. Unsupervised learning 
refers to tasks in which there is no data on either normal or 
abnormal operation and no class marks for any data.

This article focuses on the Data and Pre-Processing 
stages, traced with heavy line in Fig. 2. It discusses the 
methods of signal pre-processing that help cleanse time 
series data and transform, isolate and select data features 
with respect to NPPs and other complex technical systems.

Data

An NPP may have tens of thousands of instrument chan-
nels (Akimov et al. 2015, Arkadov et al. 2019). These 
include approximately 3,000 temperature signals, 450 
electrical signals, 4,700 binary input signals, and 3,200 
pressure, level, consumption and other signals. In additi-
on, monitoring, control and diagnostics systems generate 
a large amount of useful data and, in most cases, transmit 
only aggregated information to the Supervisory Control 

Figure 1. Taxonomy of data pre-processing methods.

Figure 2. Equipment diagnostics loop.
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And Data Acquisition (SCADA) system. Arkadov et al. 
(2020) distinguished the following main groups of raw 
data parameters:

•	 geometric quantities (measurements of length, posi-
tion, angle of inclination, etc.);

•	 thermotechnical quantities (temperature, pressure, 
flow rate, volume of working fluid);

•	 electrical quantities (current, voltage, power, fre-
quency, induction, etc.);

•	 mechanical quantities (deformation, forces, torques, 
vibration, noise level, etc.);

•	 chemical composition (concentration, chemical 
properties, etc.);

•	 physical properties (humidity, electrical conductivi-
ty, viscosity, radioactivity);

•	 parameters of ionizing radiation (radiation fields 
inside and outside of zoned fluxes of neutrons and 
gamma radiation);

•	 other parameters.

Most of the generated and aggregated signals relate 
to the raw data and represent time-series type of data. 
Asynchronous generation and acquisition of data pres-
ent a problem in data analysis. Malfunctions of meas-
urement channels result in data omissions, inaccurate 
readings and noise contamination. Moreover, self-mon-
itoring or self-diagnostic systems of measuring equip-
ment can either detect invalid values or skip them. How-
ever, various pre-processing methods make it possible 
to minimize the impact of such factors on the quality of 
technical diagnostics.

Data Pre-Processing

In general, the Pre-Processing stage consists of the four 
main steps shown in Fig. 1: Data Cleansing, Feature 
Transformation, Feature Engineering and Feature Selec-
tion. The following sub-sections give a more detailed ac-
count of each step.

Data cleansing

The Data Cleansing helps eliminate invalid values and 
outliers by removing or correcting them. At this stage, 
either the missing data are filled in, or the data objects 
containing such gaps are deleted if their share is small. 
The features with a large number of data gaps or invalid 
values can also be excluded from further analysis.

All measurements affecting NPP safety should be 
promptly diagnosed and marked by a validity indicator 
(Arkadov et al. 2019) that shows the degree of informa-
tion reliability. It allows eliminating invalid data in the 
SCADA. However, not all measurements come with reli-
able self-monitoring. There is a growing body of studies 
that aim at solving the problem of diagnosing the measur-
ing equipment and controlling the reliability of measure-

ments, for example (Zavaljevski and Gross 2000, Li et al. 
2018a, 2018b, 2018c, 2019, Arkadov et al. 2020).

Data gaps appear due to the imperfection of modern 
measuring systems, communication channels and oth-
er infrastructure. This poses a problem when working 
with anomaly detection methods and other techniques. 
The simplest approaches here are to ignore features with 
gaps or replace the gaps with specially assigned values, 
for example, 0 or −1. Also, missing values can be filled 
in by standard methods, such as the moving average or 
median over the selected window; the average (quanti-
tative characteristic), mode (categorical characteristic) 
or median value over the entire time series; and the last 
value obtained before the gap. Alternatively, there are ad-
vanced methods to fill in missing data, for example, the 
machine-learning methods (for regression, see Honghai 
et al. (2005); for nearest neighbor method, see Batista and 
Monard (2002), Jonsson and Wohlin (2004); for neural 
networks, see Gupta and Lam (1998); for k-means and 
fuzzy k-means method, see Li et al. (2004), etc.) Batista 
and Monard (2003) and Wohlrab and Fürnkranz (2009) 
compared different gap filling procedures. Zagoruyko 
(1999) and Marlin (2008) gave reviews of gap-filling 
techniques with different approaches.

To tackle the problem of outliers, one can either apply 
conventional methods, for example, remove values that 
contradict the laws of physics or fail to meet the standard 
deviation of a feature, or resort to modern methods of data 
mining and machine learning. However, in most cases, 
the problem of finding anomalies in data is an unsuper-
vised learning task and hence it is suggested to use the 
class of unsupervised learning methods. In his textbook 
on models for detecting outliers and anomalies, Aggarwal 
(2015) identified six main approaches, each correspond-
ing to a class of models:

1.	 extreme value analysis;
2.	 clustering;
3.	 distance-based models;
4.	 density-based models;
5.	 probabilistic models;
6.	 information-theoretical models.

Zhao et al. (2019a) described the PyOD library, which 
includes twenty outlier detection methods, for the Python 
Programming Language.

Another approach to solving the problem of outlier de-
tection is the use of ensembles (Aggarwal 2013, Aggar-
wal and Sathe 2015, Aggarwal and Sathe 2017, Zhao et 
al. 2019b). Ensembles are based on sequential or parallel 
application of a single base algorithm or a set of base algo-
rithms to data subsamples or feature subspaces, with the 
following evaluation of the resulting response sets. Gradi-
ent boosting, random forest, bagging and some other com-
mon methods are founded on building such ensembles.

Turning now to support vector machines (SVM), 
there are two principal SVM-based methods for detect-
ing anomalies in data (Scholkopf et al. 2000). The first 
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one, One-Class Support Vector Machine, is used to detect 
novelties (Scholkopf et al. 2000) and anomalies (Amer 
et al. 2013) in data. The idea behind this method is to ap-
ply such a transformation of the feature space that in the 
new space all the objects and the hyperplane, separating 
them from the origin of coordinates, lie as far as possible 
from the origin. Zhang et al. (2009) presented the online 
application of One-Class Support Vector Machine for out-
lier detection. The second one is Support Vector Data De-
scription (Tax and Duin 2004). It transforms the feature 
space and then draws a boundary sphere around the data, 
pulling the maximum number of objects inside the sphere 
and keeping its radius as small as possible. Note that Sup-
port Vector Data Description is sometimes referred to as 
the SVM-based one-class classifier, and it causes confu-
sion of the two methods. These methods are computa-
tionally complex and often show weak results, though the 
advantage is its clear mathematical and statistical base.

Isolation Forest, or iForest, identifies outliers by the 
low depth of outlying values in the constructed tree (Liu 
et al. 2018). The method cannot be applied to streaming 
data in real time, since building a tree and selecting outly-
ing values require data sample. Tan et al. (2011) and Ding 
and Fei 2013 gave examples of the algorithm operation in 
the online mode with a buffer. The advantage of the meth-
od is low computational complexity and the ability to 
work with heterogeneous input data. The disadvantage is 
the inability to work with data as with a time series – they 
are perceived as a non-temporal set of states or instances.

Cluster analysis is the process of categorizing a set of 
objects into groups (clusters) so that objects in one group 
are similar by some of the attributes. The study by Jiang et 
al. (2001) was one of the first to employ cluster analysis to 
detect outliers in data. Breunig et al. (2000) examined the 
degree of being an outlier, called the Local Outlier Fac-
tor (LOF), depending on the point density. In a follow-up 
study, He et al. (2003) presented the Cluster-Based Local 
Outlier Factor and an outlier detection algorithm based 
on cluster analysis. Such algorithms as ROCK (Guha et 
al. 2000) and DBSCAN (Ester et al. 1996, Duan et al. 
2009) are able to detect outliers, but these algorithms re-
gard noise, i.e. objects that are not assigned to any select-
ed cluster, as outliers. Loureiro et al. (2004), Pachgade 
and Dhande (2012) and many other studies also report at-
tempted approaches and algorithms for detecting outliers 
in data using cluster analysis. As for the initial data for 
clustering algorithms, both initial signals and diagnostic 
features generated from them can be used. In addition, 
generally, clustering algorithms have no requirements for 
input data, which is one of the advantages of this method. 
A disadvantage is the use of heuristics in most clustering 
methods at various stages of solving the problem.

Katser et al. (2019) give a more detailed description of 
One class Support Vector Machine, Isolation Forest, and 
cluster analysis in terms of detecting data anomalies and 
equipment faults.

Let us now consider minimum covariance determi-
nant (MCD), another method to control outliers in data 

(Rousseeuw 1984). Its objective is to find the data sub-
sample whose covariance matrix has the lowest determi-
nant. Thus, when calculating the covariance matrix, the 
values that are considered to be outliers, get excluded. It 
improves the quality of problem solving by finding the 
covariance matrix (Principal Component Analysis, In-
dependent Component Analysis, etc.). The FAST-MCD 
algorithm, developed for the purpose of quick search of 
the exact subsample, selects at least half of the observa-
tions from the total pool, making an acceptable number 
of operations, which allows using the method in practice 
(Rousseeuw and Driessen 1999).

Hubert and Debruyne (2009) presented the advan-
tages, disadvantages, limitations and examples of MCD 
application in various fields. Similarly, Hardin and 
Rocke (2004), Fauconnier and Haesbroeck (2009) and 
Leys et al. (2018) examine the application of this out-
lier detection method to solve some practical problems. 
It can also be used for fault detection, for example, in 
conjunction with Independent Component Analysis (Cai 
and Tian 2014).

Feature transformation

At the Feature Transformation stage, the transformation 
affects the features values (scaling, change in the sampling 
rate), their type (categorization of discrete and continuous 
values), modality (videos are converted into a sequence of 
pictures, pictures into tables of numerical data), etc.

Most of the pre-processing algorithms require input 
data, the features of which are on the same scale, since 
the mean value and variance of features impact their sig-
nificance for algorithms (Bishop 2006, Hastie et al. 2009). 
Among numerous scaling methods, the most common 
ones are the following (Shalabi et al. 2006):

•	 Linear:
◦	 Z-Normalization/Standardization: normalizing 

the mean to 0, standardizing the variance at 1;
◦	 Min-Max Normalization: rescaling the range of 

features to bring data to the 0 to 1 scale, with zero 
corresponding to the minimum value before nor-
malization and one corresponding to the maximum;

◦	 Normalization by Decimal Scaling: to moving 
the decimal point of values of feature, take i dig-
its of the maximum value of a time series and 
divide each value of the series by 10i;

◦	 MaxAbs scaling: normalizing each time series 
value to the maximum absolute value of the en-
tire series;

•	 Non-linear:
◦	 Hyperbolic tangent: scaling the values to [−1…1];
◦	 Logistic (sigmoid) function: scaling the values to 

[1…0].

In addition to scaling, the Box-Cox transformation 
(taking of logarithm) is often applied to features (Sakia 
1992) to make the distribution of features similar to nor-
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mal. The transformation can be applied multiple times but 
only to positive values.

Another important problem is to bring signals with dif-
ferent sampling rates to a single one. In their monograph, 
Arkadov et al. (2020) described the main approaches in 
its chapter Combining Measurement Information of Dif-
ferent Systems:

•	 reducing the sampling rate of all processes to the 
minimum;

•	 increasing the sampling rate of all processes to the 
maximum;

•	 converting to an intermediate or any other sam-
pling rate.

The choice of a specific rate, which all signals must be 
converted to, should be based on the characteristic rate 
of the analyzed process and be consistent with the subse-
quent stages of diagnostics. A significant decrease in the 
rate can lead to the loss of information in the signals while 
an unreasonable increase in the rate can affect the compu-
tational complexity of subsequent data analysis processes.

Arkadov et al. (2020) outlined the conditions of appli-
cability, advantages and disadvantages of the approaches 
but only to the extent of spectral analysis. It is worth sup-
plementing the chapter with several observations:

Firstly, now that the machine learning methods are 
gaining popularity, including due to the ability to work 
with Big Data, sometimes it pays to bring signals to a low 
frequency to reduce the total computational complexity 
of the problem. It also may be necessary to reduce the 
sampling rate if the set of sequentially applied methods is 
large, to be able to solve problems in real time.

Secondly, the monograph missed an important point 
of applying the above approaches in the real time mode. 
Since interpolation is not applicable in real time mode (in 
the pointwise analysis) and extrapolation is complex and 
rarely used, simpler methods can deliver the reduction to 
a single sampling rate, namely:

•	 increasing the sampling rate by filling the current 
range in with the last received value with subse-
quent sampling;

•	 increasing the sampling rate by filling in the average 
or median value at the last range with subsequent 
sampling;

•	 decreasing the sampling rate by selecting extrema, 
mean or median values in the range.

Feature selection and generation

Feature selection can be generally understood as decli-
ning in the number of features, for example, by searching 
for a subspace of a lower dimension using dimensionality 
reduction methods or by simply discarding a part of un-
informative features. Feature selection simplifies models, 
reduces the complexity of the models problem training, 
and helps avoid the curse of dimensionality.

Zagoruyko (1999), Bishop (2006) and Hastie et al. 
(2009) reflected on the problem of selecting a system of 
informative features and the variety of methods for that 
purpose. According to these authors, the most common 
algorithms are as follows:

•	 complete rummage of all the feature sets;
•	 sequential feature selection of features (Add);
•	 sequential feature elimination (Del);
•	 genetic algorithm;
•	 random search;
•	 clustering of features.

Well-known extensions of some of these algorithms 
like SHAP (Lipovetsky et al. 2001) and LIME (Ribeiro et 
al. 2016) are successfully used nowadays for interpreting 
machine learning model predictions measuring feature im-
portance. A variety of such methods are shown by Lund-
berg et al. (2017) in their work and references therein.

Regularization, which imposes a penalty the com-
plexity of the model, is often applied to machine learn-
ing problems (Bishop 2006, Hastie et al. 2009). The L1 
regularization and the least absolute shrinkage and selec-
tion operator (LASSO; see Tibshirani (1996)) solves the 
problem of feature selection, by excluding some of the 
original uninformative features from the subsample used 
for training and operation of the model.

Feature generation is possible if based on the logic and 
physics of the process or on standard transformations, i.e. 
raising to the polynomial power or performing multiplica-
tion on feature values. Engineering of new diagnostic fea-
tures is also the acquisition of signal auto-features by us-
ing a sliding buffer and all kinds of correlating pairs, and 
other rather trivial transformations. In respect to NPPs, 
they are discussed in the monographs by Arkadov et al. 
(2004, 2018, 2020).

Most techniques of dimensionality reduction solve 
both the problem of reducing the number of features and 
the problem of engineering new diagnostic features. The 
techniques of dimensionality reduction project data into 
a lower-dimensional space and, unlike selection meth-
ods, considers all the original information, thus making 
it possible to simplify and improve the procedure for 
monitoring and searching for anomalies in signals. The 
dimensionality reduction problem has many applications 
(Chiang et al. 2001). A notable example of using the di-
mensionality reduction is visualization, i.e. representing a 
dataset in a two- or three-dimensional space.

Principle Component Analysis (PCA) is a widely used 
technique for reducing the dimensionality of datasets. The 
idea of the method is to search for a hyperplane of a given 
dimensionality in the original space with the subsequent 
projection of the data onto the found hyperplane. The axes 
of the new space are a linear combination of the original 
ones and get selected based on the variance of the original 
features. The transformation of the measurement space 
into a new orthogonal space is performed by bringing 
the covariance (correlation) matrix to a diagonal form; 
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for this reason, the original features in the new space are 
uncorrelated. Li et al. (2018a, b, c, 2019) and Ayodeji et 
al. (2018) studied applications of Principal Component 
Analysis for signal pre-processing and feature generation 
in problems of diagnosing equipment and sensors.

Independent Component Analysis (ICA), unlike Prin-
ciple Component Analysis, finds a space in which the 
original features are not only uncorrelated, but also inde-
pendent in terms of statistical moments of a higher order. 
In other words, Independent Component Analysis solves 
the problem of finding any, including non-orthogonal, 
space where the axes are a linear combination of the orig-
inal ones. The goal is to transform the original signals so 
that in the new space they would be statistically independ-
ent from each other as much as possible (Kano et al. 2003, 
Lee et al. 2004a).

Both PCA and ICA build transformations into a new 
space only based on the matrix of features, without taking 
into account the response vector. This solves the problem 
of the mutual dependence of features, but fails to tackle 
the presence of features that do not affect the target varia-
ble (response vector). That is why such features are used 
in further analysis.

Compared to PCA where the axes of the new space 
are selected based on the variance of the original features, 
the Partial Least Squares (PLS) method, or Projection to 
Latent Structures, selects the axes of the new space pro-
ceeding from the maximization of the covariance between 
the matrix of features and the matrix of responses. At that, 
new spaces are found for both matrices. The new axes for 
the feature space are calculated to provide the maximum 
variance along the axes in the new space for the matrix 
of responses. Using the data on equipment faults as re-
sponses, one can obtain a lower-dimensional space for the 
matrix of feature and hence more accurately determine 
various faults (MacGregor and Kourti 1995, Chiang et al. 
2001, Wang et al. 2003, Ma and Jiang 2011).

The application of the PLS method is limited due to the 
need to know the classes of events (faults) when training 
the model. For that reason, the method is often used at the 
pre-processing stage when solving the problem of making 
a diagnosis or determining the causes.

The wide applicability of these techniques is explained 
by the fact that they can tame multidimensional, noisy 
data with correlated parameters by translating the data 
into a lower-dimensional space that contains most of 
the Cumulative Percentage Variance of the original data 
(Chiang et al. 2001, Jiang and Yan 2014, Xu et al. 2017). 
However, the standard PCA, ICA and PLS methods can 
only find linear relationships of features and sometimes 
fail to solve problems efficiently enough. Hence, there ap-
peared a number of modifications improving them:

•	 kernel methods: for PCA, see Lee et al. (2004a) 
and Choi and Lee (2004); for ICA, see Zhang and 
Qin (2007); for PLS, see Zhang et al. (2010), Zhang 
and Hu (2011), Jiao et al. (2017). Unlike the linear 
methods of dimensionality reduction, the non-linear 

ones produce an effective dimensionality reduction 
due to the creation of a non-linear combination of 
features to create a new lower-dimensional space;

•	 dynamic methods: for PCA, see Ku et al. 1995, Rus-
sell et al. (2000); for ICA, see Lee et al. (2004b); for 
PLS, see Chen and Liu (2002). The dynamic meth-
ods, used for analysis of transient phenomena, sup-
plement the studied sample with a certain number of 
previous observations and factor in autocorrelations 
and cross-correlations with displacements in time;

•	 probabilistic methods: for PCA, see Tipping and 
Bishop (1999), Kim and Lee (2003); for ICA, see 
Zhu et al. (2017); for PLS, see Li et al. (2011). 
The probabilistic methods model the data distribu-
tion as a multivariate Gaussian distribution. With 
PPCA, it is possible to construct a PPCA mixture 
model, which consists of several local PPCAs and 
detects faults in data with multimodal or complex 
non-Gaussian distributions (Ge and Song 2010, 
Raveendran and Huang 2016, Raveendran and 
Huang 2017);

•	 Sparse Principal Component Method (Sparse PCA), 
which has appeared only recently, takes only a part 
of the original features to construct a new lower-di-
mensional space. Gajjar et al. (2018) presented its 
application for fault detection;

•	 dynamic kernel PLS technique and a brief overview 
of works on PLS modifications were presented by 
Jia and Zhang (2016).

Linear Discriminant Analysis (LDA), or Fisher Discri-
minant Analysis (FDA), is a statistical analysis method 
that searches for a linear combination of features able to 
separate events from different classes (determining differ-
ent faults) in the best way possible (Chiang et al. 2001). It 
is used for the problems of classification and dimension-
ality reduction of the original feature space. de Lazaro et 
al. (2015) demonstrated that the kernel LDA (FDA with 
kernels in Mika et al. (1999)) showed better results as 
compared to the kernel PCA. By analogy with the above 
methods, the probabilistic version of LDA was developed 
and presented by Prince and Elder (2007). The method has 
proven itself well in many fields, including nuclear indus-
try (Garcia-Allende et al. 2008, da Silva Soares and Gal-
vao 2010, Jamil et al. 2016, Cho and Jiang 2018), but it 
has the same limitation as the PLS method: it requires the 
vector of responses that often does not exist in practice.

Canonical Correlation Analysis (CCA), or Canonical 
Variate Analysis (CVA) is a technique of searching for 
lower-dimensional spaces for two sets of variables (fea-
tures and responses) when projecting the data in which 
the cross-correlations between the two sets of varia-
bles are maximal among all possible variants of spaces 
(Chiang et al. 2001, Hardoon et al. 2004, Manly and Al-
berto 2016). The basis of the variables in the new space 
is a linear combination of the original variables. CCA is 
used as a method of dimensionality reduction but it can 
also be applied to informative feature selection (Kaya et 
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al. 2014). Chen et al. (2016b, 2016c) used CCA to mon-
itor industrial processes, and Chen et al. (2018b) applied 
a modification of this technique for monitoring process-
es with a non-Gaussian distribution. CCA is similar to 
PLS and LDA by the need to resort to a response vector 
(Chiang et al. 2001).

Factor Analysis is a multivariate statistical analysis 
that serves to determine the relationship between varia-
bles and reduce their number (Harman 1976, Kim 1989, 
Warne and Larsen 2014, Manly and Alberto 2016). It is 
based on the assumption that known variables depend on 
fewer unknown variables and random error. This allows 
using Factor Analysis to replace correlated measure-
ments with a smaller number of new variables (factors), 
although losing a small amount of information contained 
in the original data. Another requirement is to represent 
the factors in terms of the original variables. The factor 
itself is interpreted as the cause of the joint variability of 
several original variables. The main difficulty in Factor 
Analysis is the selection and interpretation of the prin-
cipal factors.

Feature bagging, or bootstrap aggregation, is a learning 
method that searches through randomly selected feature 
subsamples from n/2 to n − 1 from the number of original 
n features and uses the basic algorithm on each subsam-
ple, and after that all results are aggregated by summation 
or another method (Breiman 1996). Feature bagging al-
lows improving the performance of algorithms, for ex-
ample, classification accuracy (Bryll et al. 2003). Laza-
revic and Kumar (2005) provided an algorithm to solve 
the problem of detecting outliers in data with examples. 
Aggarwal and Sathe (2015) proposed a modification of 
the algorithm that reduces the dependence of the basic al-
gorithms on themselves.

Bagging in combination with basic algorithms turns the 
problem solution into an ensemble of algorithms, increas-
ing the computational complexity of the basic algorithms 
but improving the accuracy and robustness of the results. 
If all features are independent and important, bagging of-
ten degrades the quality of responses as each algorithm 
has an insufficiently informative subsample to learn.

Neural networks are also used for data processing and 
dimensionality reduction. Today, one of the most effective 
methods for the latter purpose is an autoencoder – a type 
of artificial neural network applied to encode data, usu-
ally in unsupervised learning (Bourlard and Kamp 1988, 
Sakurada and Yairi 2014, Chen et al. 2016a, Chalapathy 
et al. 2017). Each subsequent layer of the autoencoder up 
to the middle layer – the bottleneck – nearly always has 
fewer neurons than the previous one. Time series can be 
input to the network, and the main requirement to them is 
preliminary data normalization. An autoencoder aims to 
learn a representation for data in another subspace, usual-
ly for a dimensionality reduction problem. An autoencod-
er learns to reduce the dimensionality of the feature space 
of the data, received at the network input, to a specified 
number of features, and then to decode the compressed 
data back to a representation that most closely matches 

the original data. Thus, the original data is supplied to the 
input and output of the neural network, and at each train-
ing iteration (epoch), the error between the original data 
and the output data is minimized.

In addition to feed-forward networks, there are a large 
number of modernized architectures; some of them are 
as follows:

•	 convolutional autoencoders whose architecture in-
cludes a convolutional layer that creates a convo-
lutional kernel for the convolution of input data by 
one feature. It is used for data noise removal (Grais 
and Plumbley 2017), clustering (Chen 2015, Ghase-
di et al. 2017), fault detection (Chen et al. 2018a) 
and other purposes;

•	 Recurrent Neural Network (RNN) based Autoen-
coders and their varieties (Elman 1990, Chung et al. 
2016), such as Long Short-Term Memory (Hoch-
reiter and Schmidhuber 1997) and Gated Recurrent 
Units (Chung et al. 2014);

•	 Variational Autoencoders (VAE), by studying the 
probability distributions that simulate the input data, 
allow the hidden-variables model to learn (Everett 
2013). For more details on VAE architecture and 
applications, refer to Kingma and Welling (2013), 
Doersch (2016).

Autoencoders can be used jointly with standard fault 
detection methods, for example, with statistical detection 
criteria (Yang et al. 2015, Xiao et al. 2017). A high de-
gree of compression of the original data, due to finding 
complex non-linear dependencies, and the possibility of 
architecture upgrade, for example, in order to remove 
noise (Vincent et al. 2008), are the advantages of the above 
neural networks, but it is worth noting the computational 
complexity of the algorithms and the complexity of the 
models tuning. Generally, neural networks, especially 
deep ones, are considered as techniques that extract useful 
features automatically. And sometimes, it is an advantage 
over classical machine learning and other approaches, 
where feature extraction is often a manual and laborious 
part of work. Even though this advantage of neural net-
works increases the quality of the model and final results 
by extracting more complex nonlinear features, it can also 
be considered a disadvantage due to a lack of knowledge 
of how the feature is extracted. So, data scientists mostly 
can’t reproduce the logic of how the feature is pulled out 
from the original subset and what intuition and physics 
are behind. The popularity of this field of knowledge has 
grown recently. Here we recommend selecting either the 
problem solving quality is important or the transparency in 
the feature extraction and modeling processes is important.

Spectral Analysis includes time series processing as-
sociated with obtaining a representation of signals in 
the frequency domain. The main application of Spectral 
Analysis is to assess the vibration of equipment. The most 
popular techniques of spectral processing are the Fourier 
transform, the Laplace transform, the Hilbert transform 
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and the Hilbert-Huang transform. The results of Spectral 
Analysis are rather easy to interpret, and it is possible to 
detect faults, determine the nature of their occurrence and 
make a diagnosis on their basis. Arkadov et al. (2004, 
2018, 2020) described the application Spectral Analysis 
to NPP diagnostics in detail. As for non-stationary time 
series, time-frequency analysis is widely used to detect 
malfunctions in rotary equipment under time-varying 
operating conditions. Kim et al. (2007) provided a com-
parative analysis of the windowed Fourier transform, the 
Wigner-Ville distribution, and the wavelet transform.

Another tool of fault detection can be to generate di-
agnostic features that serve as equipment health indica-
tors. Such diagnostic features that characterize the sys-
tem condition, are identified by an expert based on their 
experience for a clear and effective understanding of the 
state of a technical system and, accordingly, for detecting 
anomalies in operation (Leskin et al. 2011, Costa et al. 
2015, Baraldi et al. 2018, Arkadov et al. 2020). In effect, 
principal components in PCA, bottleneck features in an 
autoencoder, and the Fourier spectrum in a signal are the 
diagnostic features, but the main distinction of equipment 
health indicators is that they are formulated in a purely 
heuristic way. An expert builds the equipment health in-
dicators upon processing and formalization of a pattern of 
regularities that are not described by known physical and 
mathematical models of equipment.

The advantages of the diagnostic features approach in-
clude the possibility of creating a rational solution that 
accumulates experts’ experience, and the ease of health 
indicator implementation. The disadvantages are the lack 
of physical or mathematical models that could form the 
foundation of the method, and its limitations for, as a rule, 
an indicator points only to malfunctions of the same kind 
in one unit of equipment.

Time series data augmentation

The problem of lacking time series data leads to the in-
applicability of deep learning algorithms in some appli-
cations. In such cases, augmentation or data generation is 
used for adding more synthetic data for better training and 
working of machine learning algorithms. Though quite a 
bit of attention is paid to this field of knowledge, the sur-
veys by Ivana et al. (2020) and Wen et al. (2021) highlight 
the state of this research field. The latter work provides the 
following taxonomy for time series data augmentation:

1.	 Basic approaches:
a.	 Time domain;
b.	 Frequency domain;
c.	 Time-frequency domain.

2.	 Advanced approaches:
a.	 Decomposition Methods;
b.	 Statistical Generative Models;
c.	 Learning Methods (including Embedding Space, 

Deep Generative Models, and Automated Data 
Augmentation).

Although data augmentation is quite a useful tool for 
improving the quality of various models, it mainly relates 
to the training stage. Data augmentation almost never is 
being a part of the equipment diagnostics pipeline. More-
over, time series data augmentation methods are not ap-
propriately researched for real-world industrial data with 
noise and possible various statistical changes happening 
all the time.

Online application of pre-
processing methods

Each pre-processing method has its own distinctive na-
ture in relation to the original data: some are capable of 
working with one data object while others require the cal-
culation of values based on a learning sample or a buffer. 
Moreover, real-time pre-processing must match the diag-
nostics model selected for learning; otherwise, the mo-
dels may give incorrect results. For such cases, it is worth 
discussing the mechanisms for applying pre-processing 
methods:

•	 The pointwise transformation in learning and op-
eration. This mechanism is used when the applied 
pre-processing methods require a state vector only at 
the current time. Examples of such transformations 
are deleting data exceeding a certain (for example, 
physically justified) threshold, raising a feature to 
the polynomial power, performing multiplication on 
feature values, etc.

•	 Complete or batch transformation during learning, 
pointwise transformation during operation. This 
mechanism is used when the transformation requires 
the calculation of values, for example, the mean or 
the variance of a learning sample. The values ob-
tained at the learning stage are saved and applied in 
real-time operation for each new state vector. Exam-
ples of such transformations are One-Class SVM, 
iForest, MCD, PCA and all linear methods for re-
ducing features to a single scale mentioned in this 
article.

•	 Batch transformation. It refers to the transforma-
tion of features based on the calculation of char-
acteristics using a sliding window or a batch. An 
example here is calculating a moving average of a 
signal per a window or obtaining auto-characteris-
tics of signals using a sliding buffer and all kinds of 
correlated pairs.

Let us demonstrate how methods are applied in re-
al-time mode, assuming that our preprocessing pipeline 
consists of the following steps:

1.	 Moving average for gaps filling;
2.	 Z-Normalization;
3.	 PCA applying;
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1.	 Selecting the first principal component for further 
comparison with the threshold for anomaly detection.

First of all, the new point for multivariate time se-
ries is received. Then the average value for the window 
with previous points is calculated if some of the values 
in the novel vector are missing. Into the gaps, calculated 
points are inserted. After that, Z-normalization is applied 
using previously (during the training stage, commonly, 
for fault-free mode) defined mean and standard deviation 
values. Afterward, PCA is applied using a transformation 
matrix calculated for the train set. Finally, the value over 
the first principal axis is selected for further comparison.

Conclusion

This overview has described the peculiarities of the data 
collected at NPPs and its pre-processing in real time. 
Table 1 summarizes the methods of data pre-processing, 
carried out before solving the main problem of diagnostics.

The problems encountered in data are not unique to 
the nuclear industry, but the outstanding aspect of NPPs 

is the large amount of generated information, the variety 
of its sources and data types. Pre-processing is necessary 
to prepare the data for input to the diagnostic algorithms, 
since many of them either have requirements that rule out 
the input of data with gaps, outliers, signals with different 
sampling rates, or produce incorrect results when working 
with unscaled data. Another reason for using pre-process-
ing methods is the possibility of improving the quality of 
the diagnostic algorithms and reducing the computational 
complexity of the problem, for example, by reducing the 
dimensionality of the initial data or lowering the sampling 
frequency of signals.

We find it necessary to give a summary with providing 
our opinion on which methods are commonly used, which 
are not, and why:

•	 When filling in gaps, the most intuitive way is to use 
specially assigned values to avoid generating false 
information about the data. But not all machine 
learning methods can process such values proper-
ly. That is why the most common techniques fill 
the gaps with some data characteristics from mov-
ing windows or over the whole signal realization. 

Table 1. Characteristics of data pre-processing methods

Item Method Data input 
limitation

Problem type Univariate/Multivariate Online References

Data Cleansing
1 One-class SVM Normalization Unsupervised +/+ + Scholkopf et al. 2000

Tax and Duin 2004
Zhang et al. 2009
Amer et al. 2013

2 iForest Normalization Unsupervised +/+ –* Tan et al. 2011
Ding and Fei 2013

Liu et al. 2018
3 Cluster analysis Equidistant* Unsupervised +/+ + Ester et al. 1996

Breunig et al. 2000
Guha et al. 2000
Jiang et al. 2001
He et al. 2003

Loureiro et al. 2004
Duan et al. 2009

Pachgade and Dhande 2012
4 MCD Normalization, 

equidistant
Unsupervised –/+ + Rousseeuw 1984

Rousseeuw and Driessen 1999
Hardin and Rocke 2004

Fauconnier and Haesbroeck 2009
Hubert and Debruyne 2009

Leys et al. 2008
Cai and Tian 2014

Feature Selection and Generation
5 PCA Normalization, 

equidistant
Semi-supervised –/+ + Ku et al. 1995

Tipping Bishop 1999
Russell et al. 2000
Kim and Lee 2003
Choi and Lee 2004

Lee et al. 2004a
Ge and Song 2010

Raveendran and Huang 2016, 2017
Ayodeji et al. 2018
Gajjar et al. 2018

Li et al. 2018a, 2018b, 2018c, 2019
6 ICA Normalization, 

equidistant
Semi-supervised –/+ + Kano et al. 2003

Lee et al. 2004b, 2004c
Zhang and Qin 2007

Zhu et al. 2017
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Machine learning techniques are quite rare and situ-
ational for such problems.

•	 As for outliers and impossible values detection, the 
most straightforward approaches to detecting val-
ues that contradict the laws of physics are the most 
popular ones due to the transparency of such rules 
for engineering personnel. Searching for deviation 
from some statistical characteristics, even utilizing 
machine learning techniques, is still fighting for 
attention. They are primarily used in retrospective 
analysis or in diagnostic systems that provide rec-

ommendations for operating personnel but not in 
critical safety systems.

•	 When transforming the data, Z-Normalization and 
Min-Max scaling are the most common scaling tech-
niques because in the overwhelming majority of cases 
they show better results. Moreover, other methods are 
used when they are required for some specific reason 
for further analysis. Box-Cox transformation and oth-
er techniques like derivating the data are situational 
and used when further research requires working with 
normally distributed data or stationary time-series.

Item Method Data input 
limitation

Problem type Univariate/Multivariate Online References

7 PLS Normalization, 
equidistant

Unsupervised –/+ + MacGregor and Kourti 1995
Chiang et al. 2001
Chen and Liu 2002
Wang et al. 2003
Zhang et al. 2010

Li et al. 2011
Ma and Jiang 2011
Zhang and Hu 2011

Jiao et al. 2017
8 LDA, FDA Normalization, 

equidistant
Unsupervised –/+ + Mika et al. 1999

Chiang et al. 2001
Prince and Elder 2007

Garcia-Allende et al. 2008
da Silva Soares and Galvao 2010

de Lazaro et al. 2015
Jamil et al. 2016

Cho and Jiang 2018
9 CCA, CVA Normalization, 

equidistant
Unsupervised –/+ + Chiang et al. 2001

Hardoon et al. 2004
Kaya et al. 2014

Chen et al. 2016b, 2016c, 2018b
Manly and Alberto 2016

10 Factor analysis Normalization, 
equidistant

Semi-supervised –/+ + Harman 1976
Kim JO 1989

Warne and Larsen 2014
Manly and Alberto 2016

11 Spectral analysis Stationarity, 
equidistant*

Unsupervised +/– + Arkadov et al. 2004, 2018, 2020
Kim et al. 2007

12 Bagging – Unsupervised –/+ – Harman 1976
Kim JO 1989
Breiman 1996

Bryll et al. 2003
Lazarevic and Kumar 2005

Warne and Larsen 2014
Manly and Alberto 2016

13 Autoencoder Normalization Semi-supervised +/+ +* Bourlard and Kamp 1988
Elman 1990

Hochreiter and Schmidhuber 1997
Vincent et al. 2008

Everett 2013
Kingma and Welling 2013
Chung et al. 2014, 2016
Sakurada and Yairi 2014

Chen 2015
Yang et al. 2015
Chen et al. 2016a

Doersch 2016
Chalapathy et al. 2017

Ghasedi Dizaji et al. 2017
Grais and Plumbley 2017

Xiao et al. 2017
Chen et al. 2018a

14 Health 
indicators

–* Unsupervised* +/+ + Leskin et al. 2011
Costa et al. 2015

Baraldi et al. 2018
Arkadov et al. 2020

Note: * cannot be applied to some models in the method.



Nuclear Energy and Technology 7(2): 111–125 121

•	 A lack of sample rate for the signal or various sample 
rates is a frequent problem for industrial data. When 
selecting a unified sample rate, achieving a trade-off 
between the loss of information and computational 
complexity is vital. At the same time, the choice of 
a specific rate should be based on the characteristic 
rate of the analyzed process. When increasing the 
sample rate in the real-time mode, filling the current 
range with the last received value is the most com-
mon technique. When decreasing, both extrema and 
mean/median values are commonly used.

•	 For feature selection, a thorough analysis combining 
with various mentioned algorithms works the best. 
Analysis may also include finding dependencies of 
target vector from features when the problem is su-
pervised. One of the most common ways is fitting 
some simple model, calculating feature importance 
for this model, and then selecting the most import-
ant features for fitting a more complex model. Reg-
ularisation is also commonly used when applicable. 
Among dimensionality reduction techniques, PCA 
is the most popular since it is unsupervised and 
provides linear transformation easy-to-understand 
and transparent for personnel. Although nonlin-

ear techniques, including neural networks, show 
state-of-the-art results, they lack interpretability of 
how transformation is constructed, making the ap-
proaches not popular in industrial applications.

•	 Feature generation in real-world applications is pri-
marily based on the logic and physics of the process 
resulting in heuristical health indicators and various 
meaningful characteristics from spectral analysis.

The methods described in this work have already suc-
cessfully proven themselves in industrial application, in-
cluding at NPPs. At the same time, these methods contin-
ue to develop, and there appear supplements that improve 
their operation or expand their field of application. This 
overview, together with Katser et al. (2019), gives a suffi-
ciently complete understanding of how the process at an 
NPP can be monitored from the moment of pre-process-
ing of the collected data to the moment of solving the first 
diagnostic problem, i.e. detecting equipment malfunction.

Further research can be focused on overviewing the 
methods used to solve such diagnostic problems at NPPs 
as arriving at the correct diagnosis, fault localization, and 
prognosis of the malfunction development.
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