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Abstract
The technologies of knowledge representation and inference in an artificial intelligence system focused on the domain 
of nuclear physics and nuclear power engineering are considered. The possibilities of description logics and graph 
databases of nuclear knowledge for the generation of cognitive hypotheses, using in addition to deduction and other 
ways of reasoning, such as inductive inference and reasoning based on analogies, are discussed. The use of adequate 
description logic and measures of semantic similarity is substantiated. Interactive visual navigation and reasoning on 
the knowledge graphs are performed by means of special retrieval widgets and the smart RDF browser. Operations with 
semantic repositories are implemented on cloud platforms using SPARQL queries and RESTful services. The proposed 
software solutions are based on cloud computing using DBaaS and PaaS service models to ensure scalability of data 
warehouses and network services. Example of use of the offered technologies and software has been given.
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1. Introduction and motivation

Since the 1960s, in the framework of research on artificial 
intelligence, various formalisms for knowledge represen-
tation (semantic networks, frame systems, etc.) have been 
developed (Harmelen et al. 2008). In 2019, the ontology 
description languages RDF, OWL (W3C 2012), know-
ledge graphs and description logics (Baader et al. 2010) 
provide a modern theoretical basis for the creation of sys-
tems and methods of acquisition, presentation, processing 
and integration of problem–oriented knowledge in com-
puter systems, which, in particular, is confirmed by the 
current standards W3C in the field of semantic web.

The reports of International Conference on Semantic 
Systems, International Workshops on Description Log-
ic noted the growing interest of giants of the IT indus-
try (Google, Facebook, Wikimedia) to graph models of 
knowledge representation and description logics. As of 
2019 educational web–portals of universities, national 
centers for the exchange of scientific information, world 
nuclear data centers underused semantic web technolo-
gies. As for the inductive inference rules in graphs, the 
following considerations make them useful. First, in-
ductive inference rules based on consideration of possi-
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ble alternatives (precedents) allow to generate cognitive 
hypotheses (fuzzy knowledge) that cannot be obtained 
directly by deductive reasoning on the graph. Secondly, 
inductive inference is one of the basic technologies of se-
mantic annotation of network content, when it is neces-
sary to redesign, expand and update existing graphs with 
new knowledge. With the help of inductive inference the 
problems of classification and clustering of new concepts 
and individuals in the semantic base of nuclear knowl-
edge are solved.

The aim of the work presented in the paper is to cre-
ate a semantic web portal of knowledge in the domain of 
nuclear physics and nuclear power engineering based on 
ontology and using graph databases deployed on cloud 
platforms. The task of the study was to create the follow-
ing graphs of nuclear knowledge:

• World nuclear data centers;
• Nuclear research centers;
• Events and publications from CERN;
• IAEA databases and network services;
• Nuclear physics at MSU and MEPhI;
• Nuclear physics journals;
• Joint nuclear knowledge graph.

The potential beneficiaries of information solutions 
and technologies that are proposed in the paper are stu-
dents, teachers, experts, engineers, managers and special-
ists in the domain of nuclear physics and nuclear power 
engineering (target audience).

2. Methodology and state of the art
2.1 Adequate description logic

The choice of adequate description logic (DL) for project 
(Telnov 2019) is dictated, on the one hand, by the requi-
rement of a complete and accurate knowledge representa-
tion about the subject area (domain) as far as possible, on 
the other hand, by the necessity to work effectively with 
remote semantic repositories using SPARQL queries. The 
OWL is a knowledge representation language standardi-
zed with the W3C, which is a crucial application of de-
scription logics. The main building blocks of OWL are 
very similar to those of DLs, with the main difference that 
concepts are called classes and roles are called properties. 
The expressive description logic underlying the contem-
porary OWL 2 submission is called SROIQ (Krotzsch et 
al. 2013, Horrocks and Sattler 2001).

The description logic with signature SROIQ is an 
extension of the earlier description logic SHOIN by all 
expressive means that were suggested by ontology devel-
opers, and which do not affect its decidability and practi-
cability. Among others, complex role inclusion axioms of 
the form R ◦ S ⊑ R or S ◦ R ⊑ R to express propagation of 
one property along another one have been added, which 
have proven useful for many domains. Furthermore, 

SHOIN has been expanded with reflexive, antisymmet-
ric, and irrelexive roles, disjoint roles, a universal role. 
Named individuals occur naturally in ontologies as names 
for specific things, persons, institutes, etc. Nominals can 
be viewed as an artificial supplement to ABox, which pro-
vides additional expressive power to DL.

In project (Telnov 2019) it is required to simulate not 
only abstract objects (documents, people, institutions, 
etc.), but also specific properties of objects, for example, 
string and temporal parameters of events and publications 
in the knowledge graph named “Events and publications 
from CERN”, “Journals in nuclear physics”, spatial char-
acteristics in the knowledge graph named “Nuclear re-
search centers”.

Specific values (temporal parameters, spatial character-
istics, etc.) cannot be represented in the concept descrip-
tion language directly, because when moving from one 
interpretation to another, these specific elements and the 
relationships between them may change, while it is re-
quired that they remain unchanged. The solution is to se-
lect a separate “concrete” domain (Baader et al. 2018) with 
a fixed set of predicates. Also, it requires a special roles, 
connecting abstract elements with specific values. Final-
ly, a new constructs that enable to build concepts on the 
basis of these linking roles and “concrete” predicates are 
needed. This requires expanding the concept description 
language with a set D of concrete datatypes and with con-
cepts of the form $R.d and ∀R.d, where d ϵ D and R is a 
role. For each d ϵ D, a set dD ϵ ∆D is associated, where ∆D is 
the domain of all datatypes. It is reasonable to assume that:

• the domain of interpretation of all concrete datatypes 
• there exists a sound and complete decision proce-

dure for the emptiness of an expression of the form 
di

D∩...∩di
D, where di

D is a concrete datatype from D.

The corresponding expansion of DL is commonly 
referred to as SROIQ(D). Summary of the syntax and 
semantics of the description logic used in the project 
(Telnov 2019) is presented in Table 1, where I is the inter-
pretation function.

2.2 On the question of inductive reasoning on know-
ledge graphs

Nuclear knowledge sometimes involves various degrees of 
uncertainty. For such a reason, in the semantic web context, 
difficulties arise when modeling real–world domains using 
only classical logical formalisms. Alternative approaches 
often suggest probabilistic knowledge, while this is hard-
ly always appropriate and justifiable (Bobillo et al. 2013). 
In addition, a purely deductive exact inference may be in-
feasible for web–scale ontological knowledge bases, and 
it does not exploit statistical regularities in data. Approxi-
mate deductive and inductive inferences, which are based 
on consideration of precedents (alternatives), are offered to 
alleviate such problems, see d’Amato et al. (2005, 2006, 
2009, 2013), d’Amato 2007 and Minervini et al. (2016).
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Today standard ontology markup languages are sup-
ported by mature semantics of DL along with a number of 
available reasoning algorithms (Baader et al. 2010). How-
ever, some tasks in the ontology life cycle, such as their 
construction and/or integration, still largely delegated to 
knowledge specialists. For the successful development 
of semantic technologies it is desirable that the construc-
tion of the knowledge databases should be supported by 
automated inductive inference procedures, including en-
tity classification and clustering tasks. The induction of 
structural knowledge like the taxonomies is not new in 
machine learning, especially for the task where clusters of 
similar objects are aggregated in hierarchies according to 
heuristic criteria or similarity measures (d’Amato 2007). 
In the Inductive Logic Programming (Muggleton and 
Raedt 1994) attempts have been made to extend relation-
al learning techniques towards representations based on 
both clausal and description logics. These methods mostly 
are based on an empirical search and generally implement 
bottom–up algorithms that tend to induce overly specific 
concept definitions and narrowly specialized ontologies.

Generally, the problem of the induction of structural 
knowledge turns out to be a uneasy task in first–order log-
ic or equivalent representations. In order to overcome the 
existing difficulties, the last decades have seen the devel-
opment of research related to the calculation of similarity 
measures for concepts and individuals in ontologies. Sim-
ilarity measure plays an important role in information re-
trieval and information integration as a means for compar-

ing concepts and/or concept instances that can be retrieved 
or integrated across heterogeneous knowledge databases. 
It seems that the quite significant from a practical point of 
view results were obtained by d’Amato et al. (2013). To 
determine the similarity measure a set of similarity values 
has to be define, usually a set of the real numbers is used for 
this. Then it is required to determine a function for a pair 
of objects that will calculate the measure of their similarity. 
Formal definitions of similarity and dissimilarity measures 
were given by d’Amato et al. (2006) and d’Amato (2007).

Naive semantic similarity can be defined as a path dis-
tance between entities in the hierarchical structure of the 
ontology. More meaningful methods to assess semantic 
similarity within a single ontology are feature matching 
and information content. There are measures have been 
developed to compute similarity values among classes be-
longing to different ontologies. For instance, a similarity 
function can detect similar entity classes by using a match-
ing process, making use of special dictionaries, semantic 
neighborhood, and discriminating features. Of particular 
interest is the approach proposed by d’Amato et al. (2006), 
aimed at finding commonalities among concepts or among 
individuals, employs the Most Specific Concept (MSC) 
method, that turns the instance checking task (that is de-
ciding whether an individual is an instance of a concept) 
into a TBox reasoning problem (d’Amato et al. 2009).

Let there be a knowledge database KB = 〈T, A〉, con-
tains two components: a TBox T and an ABox A. Let C 
and D be two concept descriptions in a T. Given a concept 

Table 1. Summary of the syntax and semantics of the used SROIQ(D) description logic.

Construct name Syntax Semantics
atomic concept C A AI ⊆ ΔI

abstract role RA R RI ⊆ ΔI × ΔI

concrete role RD T TI ⊆ ΔI × ΔI
D

nominals I {o} {o}I ⊆ ΔI, #{o}I = 1
datatypes D d dD ⊆ ΔD

conjunction C ⊓ D (C ⊓ D)I = CI ∩ DI

disjunction C ⊔ D (C ⊔ D)I = CI ∪ DI

negation ¬C
¬d

(¬C)I = ΔI \ CI

(¬d)I = ΔD \ dI

exists restriction $R.C }),(:|{).( IIIII CyRyxyxCR ∈∧∈∆∈$∆∈=$

value restriction ∀R.C }),(:|{).( IIIII CyRyxyxCR ∈⇒∈∆∈∀∆∈=∀

atleast restriction ≥ nR.C ≥ nR.CI = { x ∈ ΔI | #( { ∀y ∈ ΔI : (x, y) ∈ RI } ∩ CI ) ≥ n }
atmost restriction ≤ nR.C ≤ nR.CI = { x ∈ ΔI | #( { ∀y ∈ ΔI : (x, y) ∈ RI } ∩ CI ) ≤ n }
datatype exists $T.d {∃T.d}I = { x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ TI ˄ y ∈ dD }
datatype value ∀T.d {∀T.d}I = { x ∈ ΔI | ∀y ∈ ΔI : (x, y) ∈ TI ⇒ y ∈ dD }
local reflexivity ∃R.Self {∃R.Self }I = { x ∈ ΔI | (x, x) ∈ RI }
concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI, bI) ∈ RI

individual equality a = b aI = bI 
individual inequality a ≠ b aI ≠ bI

concept inclusion C ⊑ D CI ⊆ DI

concept equivalence C ≡ D CI = DI

role inclusion R ⊑ S RI ⊆ SI

role equivalence R ≡ S RI = SI

complex role inclusion R1 ◦ R2 ⊑ S R1
I ◦ R2

I ⊆ SI

role disjointness Disjoint(R, S ) RI ∩ SI = ∅
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C in T, it is possible to consider its extension CI, where I 
is the interpretation function. Further the canonical inter-
pretation of the ABox is considered, when constants in the 
ABox are interpreted as themselves and different names 
for individuals stand for different domain objects. The se-
mantic similarity measure is defined as in the following 
(d’Amato et al. 2009):

Definition 1 (Semantic Similarity Measure). Let L 
be the set of all concepts in DL and let A be an ABox 
with canonical interpretation I. The Semantic Similarity 
Measure s is a function

s : L × L → [0, 1]

which is defined as follows:

 

s(C, D) = ||||||
||

III

I

XDC
X


∙ max(

||
||

I

I

C
X ,

||
||

I

I

D
X ) 

where X = C ⊓ D and (·)I computes the concept extension 
w.r.t. the interpretation I.

The measure can be explained as follows. In case of 
semantic equivalence of the concepts C and D, the maxi-
mum value of the similarity will be calculated. In case of 
disjunction, the minimum value of similarity will be as-
signed because the two concepts are totally different: their 
extensions do not overlap. Finally, in the case of overlap-
ping concepts, a value in the range ]0, 1[ will be computed 
(d’Amato et al. 2009).

Definition 2 (Most Specific Concept). Let there be a 
knowledge database KB = 〈T, A〉. Given an ABox A and an 
individual a, the Most Specific Concept of a w.r.t. A is the 
concept C, denoted MSCA(a), such that A |= C(a) and ∀D 
such that A |= D(a), it holds: C ⊑ D. Here |= stands for the 
standard semantic deduction.

Once the most specific MSCA(a) of an individual a 
is known, to decide if KB |= D(a) holds for an arbitrary 
concept D, it suffices to test if T |= MSCA(a) ⊑ D. This 
method, unfortunately, loses its simplicity and efficiency 
when applied to large and complex ontologies, as it tends 
to generate very large MSCs that could lead to intractable 
reasoning. Revised MSC method for DL, allowing it to 
generate much simpler and smaller concepts that are spe-
cific enough to answer a given query, has been proposed 
by Xu et al. (2015).

Let c and d two individuals in a given ABox. Then it is 
possible to calculate C = MSCA(c) and D = MSCA(d). Ac-
cording to d’Amato et al. (2009), now the semantic sim-
ilarity measure s can be applied to these concept descrip-
tions, thus yielding the similarity value of two instances:

∀c,d : s(c, d) = s(C, D) = s(MSCA(c), MSCA(d))

The similarity value between a concept C and an indi-
vidual a can be computed by determining the MSC of the 
individual and then applying the similarity measure:

∀a : s(a, C) = s(MSCA(a), C)

The complexity of s calculation depends on the com-
plexity of the instance checking task for the adopted DL 
language, denote it as C (InstanceChecking). Similarity 
between concepts: s is a numerical measure, all calculus 
have constant complexity, instance checking is repeated 
three times: for concepts C, D and their intersection, so:

C(s) = 3 ⋅ C(InstanceChecking)

Similarity between an individual and a concept: in this 
case, besides of the instance checking operations required 
by the previous case, the MSC of the considered indi-
vidual is to be computed. Thus, denoted by C(MSC) the 
complexity of the MSC computing, get the complexity 
estimate:

C(s) = C(MSC) + 3 ⋅ C(InstanceChecking)

Similarity between individuals: this case is analogous 
to the previous one, the only difference is that now two 
MSC is to be computed for the arguments. So the com-
plexity in this case is:

C(s) = 2 ⋅ C(MSC) + 3 ⋅ C(InstanceChecking)

From the previous formulas it is clear that the com-
putational complexity of the similarity measure sensitive 
to the choice of the DL. For the ALC logic, C(Instance-
Checking) has polynomial complexity. Computation of 
the MSC also implies instance checking and depends on 
algorithm properties.

3. Technology and case study
3.1 Semantic repositories, search widgets, intelligent 
RDF browser

From a practical point of view, knowledge graphs are 
placed in the data warehouse, which are called RDF–re-
positories or triple repositories. The project (Telnov 2019) 
largely uses the Google Cloud Platform (http://console.
cloud.google.com) and Apache Jena (http://jena.apache.
org/) framework on the free quota with each of the repo-
sitories serviced by a dedicated virtual machine. Remote 
asynchronous work with the Google Cloud Platform is 
performed using the standard SPARQL 1.1 query langua-
ge through application programming interfaces in Java 
and JavaScript. Common operations are creating, reading, 
updating and deleting data in knowledge graphs. For the 
practical implementation of network requests to reposito-
ries, HTTP protocol methods GET and POST are used.

Each of the knowledge graphs contains thousands of 
triplets. Search widgets, shown in Figure 1, allow users to 
get to the right place of a specific knowledge graph, where 
the desired information objects will be detected and vis-
ualized. The principle of operation of search widgets is 
similar to the way information samples from the web us-

http://console.cloud.google.com
http://console.cloud.google.com
http://jena.apache.org/
http://jena.apache.org/
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ing popular search engines (Google, Yandex, etc.). As the 
user types the characters of the keywords in the search 
widget’s input line, the system rolls out an adequate list 
of entities from the corresponding knowledge graph. The 
user is prompted to select a suitable concept or individual 
and dive directly into the desired area of   knowledge graph. 
Thereafter, a more accurate interactive visual navigation 
through the graph and inductive reasoning on graph be-
comes possible, which is implemented in an intuitive way 
using the intelligent RDF browser, as described below.

3.2 Interactive reasoning on the graph of knowledge 
(example)

The RDF browser is an essential attribute of the project 
(Telnov 2019), which distinguishes it from other known 
solutions in the field of semantic web. Once on the de-
sired location of the desired knowledge graph using the 
search widget, then the user through the RDF browser 
can perform visual navigation on the graph, visiting its 
nodes in the correct order and extracting metadata, hy-
pertext links, full–text and media content associated with 
the node. In this case, the neighborhood (environment, 
closure) of each node of the graph becomes visible and 
navigable. This neighborhood includes the nodes of the 
graph, through which the user initially entered the seman-
tic web, as well as adjacent nodes of other graphs that are 
supported by the knowledge database.

The visual way of specifying the inference rules on the 
graph makes it stand out from the more traditional known 
reasoner’s interfaces, where inference rules are specified 
using SWRL language, logical predicates or a SPARQL–
like syntax. It seems, that the intuitively clear interactive 
visual way of specifying inference rules is more friendly 
for unsophisticated users of knowledge graphs.

The knowledge graphs, presented in the project (Tel-
nov 2019), all have built–in common patterns of rea-
soning, which, among other things, provide a means of 
navigating through graphs and means of searching in 
graphs. All reasoning and querying are implemented by 
means of smart RDF browser (created in JavaScript), 
which automatically generates the necessary SPARQL 
queries, then processes and classifies the results. More-
over, the results of many standard reasoning have al-
ready been calculated and combined into groups, which 
in the RDF browser have the form of petals around the 
nodes of the graph, see Figure 2. A click on the petal 
allows to expand any group of entities and explore ele-
ments of the group.

As an example, сonsider the following situation. Some 
student is preparing to pass the exam in nuclear physics 
at the Physics Faculty of Moscow State University. Let 
the student know only the name of the training course: 
“Physics of the atomic nucleus and particles” and the 
name of the professor: “I.M. Kapitonov”. Let us formu-
late the task: using the semantic educational web portal 

Figure 1. Search widgets designed for a quick immersion in knowledge graphs: 1 – selection of a knowledge graph for work; 
2 – quick navigation in DBpedia; 3 – search by URI in the world semantic web; 4 – examples of working with knowledge graphs; 
5 – selection of knowledge graph for demonstration.
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(Telnov 2019), it is necessary to find and study all the 
video lectures of this professor on this training course.

Also suppose, that the student discovered in You-
Tube a video lecture titled “Lecture 1. Physics of the 
atomic nucleus and particles”. He suggests, that this 
video lecture may be relevant to the training course 
being studied. Let us formulate the hypothesis: “Lec-
ture 1. Physics of the atomic nucleus and particles” is 
taught by the professor “I.M. Kapitonov” at the Phys-
ics Department of Moscow State University and it is 
included in the training course “Physics of the Atomic 
Nucleus and Particles”.

To solve the task and test the validity of the hypothesis, 
it is necessary to perform the following obvious inductive 
reasoning on the knowledge graph step by step.

Step 1. Go to the educational web portal (Telnov 
2019) and select the knowledge graph “Nuclear Physics 
at MSU, MEPHI”. It is possible to start the reasoning ei-
ther with the classes “Training course”, “Training video”, 
“Professor”, etc. or with the specific entities “Physics of 
the atomic nucleus and particles”. “Lecture 1. Physics of 
the atomic nucleus and particles”, “Kapitonov”, etc.

Step 2. Let the student decided to begin the reason-
ing from the class “Training course”. The RDF brows-
er workspace opens and the node of the graph with this 
name appears.

Step 3. The appeared node of the graph in Figure 2 
is shown under number 7. We are interested in objects 
belonging to the class “Training course”. There are three 
such objects and they are associated with our node by the 
“type” property. With a mouse click, we will open the ob-

ject that is taught at the Physics Faculty of Moscow State 
University (see nodes with numbers 11 and 6 in Figure 2).

Step 4. Continuing to similarly disclose neighboring 
nodes for the object “Physical Faculty of Moscow State 
University” (node number 6 in Figure 2) by the “includes” 
property, for the “Kapitonov” object (node number 9 in 
Figure 2) by the “is author of the video” and / or for the 
object “Physics of the atomic nucleus and particles” (node 
number 11 in Figure 2) by the property “contains a vid-
eo”, the student finally will make sure of the validity of 
the hypothesis and get the solution to the task, see node 
number 10 in Figure 2.

Step 5. The result obtained in Step 4 could also be 
achieved in the course of deductive reasoning, without 
considering possible alternatives. However, the use of in-
ductive inference allows one to naturally extract from the 
graph additional knowledge that will not be easy to obtain 
with a simple deductive inference. Acting as described 
above, it is easy to find that some video lectures on the 
training course “Physics of the atomic nucleus and parti-
cles” at the Physics Faculty of Moscow State University 
are also taught by professor B.S. Ishkhanov, see node 1 in 
Figure 2. All video lectures and other learning materials 
of both professors for this training course became availa-
ble. Through the knowledge graph, the full content of any 
training course is visually revealed and all the relation-
ships are graphically shown.

As was shown in the above example, the process of 
inductive inference on knowledge graphs resembles a 
computer adventure game, does not require special skills, 
and is accessible to the inexperienced user. Knowledge 

Figure 2. Fragment of the knowledge graph titled “Nuclear Physics at MSU, MEPHI” as an example of the implementation of 
inductive reasoning on graph.
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graphs, similar to the above, are used in the educational 
process at the NRNU MEPhI. Practice shows that uni-
versity students master the techniques of interactive work 
with knowledge graphs within a few minutes.

3.3 Case study

The metrics of the computational processes presented in 
Table 2 below were obtained under the following test con-
ditions:

• semantic repositories are hosted on the Amazon 
Web Service cloud platform at a free quota (the da-
tacenter is located in Western Europe), each knowl-
edge graph is served by its virtual computer;

• the measured speed of the Internet connection is 
about 90 Mbit/s;

• a standard workstation with an Intel Core i5-8400 
2.8/4.0 GHz processor and 16 MB memory is used 
as a client computer.

• experiments were conducted on test ontologies, 
which included no more than a thousand entities 
(DBpedia is an exception).

The software architecture is presented in (Telnov 2017), 
(Telnov and Korovin 2019). An example of a knowledge 
graph “Nuclear physics at MSU and MEPhI” in a serial-
ized format is available (Knowledge graph 2019).

The consumption of the computing resource is detailed in 
the debugging panels of browsers (Google Chrome, Mozilla 
Firefox), the corresponding parameters can be observed live 
when working with the semantic web portal (Telnov 2019). 
In all experiments, the total processing time did not exceed 
two or three seconds, with most of the time and the vast 
majority of computing resources spent on the operation of 
the interface to the knowledge database and network traffic.

4. Related works and conclusion

University of Manchester, Stanford University, Universi-
ty of Bari and a number of other universities are focused 

on the issues of theory development and technology’s 
implementation for semantic web, description logics 
and incarnations of the ontologies description language 
OWL. Special mention should be made on the project 
(d’Amato et al. 2009), where for the first time an attempt 
was made to put into practice the methods of inductive 
reasoning for the purpose of semantic annotation of con-
tent from the web. To date, such network services are 
offered by some software companies (http://jena.apache.
org/documentation/inference/).

As for the issues of visualization linked data (Bikakis 
and Sellis 2016), here one of the first successful projects 
was Lodlive (Camarda et al. 2012), which provided a tool 
for easier surfing through the DBpedia knowledge base. 
It is important continue to develop and improve tools for 
intuitive perception of linked data for non–professionals. 
VOWL (Schlobach and Janowicz 2016) is one of the mod-
ern project for the user–oriented representation of ontolo-
gies, it proposes the visual language, which is based on a 
set of graphical primitives and an abstract color scheme. 
LinkDaViz (Thellmann et al. 2015) propose a web–based 
implementation of workflow which guides users through 
the process of creating visualizations by automatically 
categorizing and binding data to visualization parameters. 
The approach is based on a heuristic analysis of the struc-
ture of the input data and a visualization model facilitating 
the binding between data and visualization options. The 
resulting assignments are ranked and presented to the user. 
SynopsViz (Bikakis et al. 2014) is a tool for scalable mul-
ti–level charting and visual exploration of very large RDF 
& Linked Data datasets. The adopted hierarchical model 
provides effective information abstraction and summari-
zation. Also, it allows efficient –on the fly– statistic com-
putations, using aggregations over the hierarchy levels.

In contrast to the above solutions, the project (Telnov 
2019) is mainly focused on the implementation in educa-
tional activities of universities and is not limited to visu-
alization of knowledge graphs and interactive navigation, 
but is aimed at the introduction of the latest semantic web 
technologies to the learning process, taking into account 
the achievements in the field of uncertainty reasoning.

Table 2. Some results of testing the performance of the knowledge graphs.

Test script Test data set Computing process metrics

Launching the main page of the web portal (Search 
widgets) Knowledge graph “World nuclear data centers”

Number of network requests: 162. 
Web page loading time: 1140ms. 
Repository loading time: 850ms. 

Server timeout: 150ms.

Discovery and visualization of the knowledge 
graph (RDF Browser)

Knowledge graph “World nuclear data centers», object 
«Center for Photonuclear Experimental Data”

Number of network requests: 39. 
Web page loading time: 893ms. 
Repository loading time: 402ms. 

Server timeout: 44ms.

Discovery and visualization of the knowledge 
graph (RDF Browser)

Knowledge graph “Nuclear physics at MSU and 
MEPhI”, object “Physics of the atomic nucleus and 

particles”

Number of network requests: 57. 
Web page loading time: 1050ms. 
Repository loading time: 643ms. 

Server timeout: 17ms.

Discovery and visualization of the DBpedia 
knowledge base (RDF Browser) DBpedia knowledge base, object “World War II”

Number of network requests: 37. 
Web page loading time: 2060ms. 
Repository loading time: 753ms. 

Server timeout: 15ms.

http://jena.apache.org/documentation/inference/
http://jena.apache.org/documentation/inference/
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