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Abstract
Hydrogen energy is able to solve the problem of the dependence of modern industries on fossil fuels and significantly 
reduce the amount of harmful emissions. One of the ways to produce hydrogen is high-temperature water-steam elec-
trolysis. Increasing the temperature of the steam involved in electrolysis makes the process more efficient. The key 
problem is the use of a reliable heat energy source capable of reaching high temperatures. High-temperature gas-cooled 
reactors with a gaseous coolant and a graphite moderator provide a solution to the problem of heating the electrolyte. 
Part of the heat energy is used for producing electrical energy required for electrolysis. Modern electrolyzers built as 
arrays of tubular or planar electrolytic cells with a nuclear energy source make it possible to produce hydrogen by 
decomposing water molecules, and the working temperature control leads to a decrease in the Nernst potential. The 
operation of such facilities is complicated by the need to determine the optimal parameters of the electrolysis cell, the 
steam flow rate, and the operating current density. To reduce the costs associated with the process optimization, it is 
proposed to use a low-temperature electrolysis system controlled by a spiking neural network. The results confirm the 
effectiveness of intelligent technologies that implement adaptive control of hybrid modeling processes in order to orga-
nize the most feasible hydrogen production in a specific process, the parameters of which can be modified depending 
on the specific use of the reactor thermal energy. In addition, the results of the study confirm the feasibility of using a 
combined functional structure made on the basis of spiking neurons to correct the parameters of the developed electro-
lytic system. The proposed simulation strategy can significantly reduce the consumption of computational resources in 
comparison with models based only on neural network prediction methods.
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Introduction
Like electricity, hydrogen is a high-quality energy carrier 
that can be produced using a variety of materials that de-
termine the process of obtaining, distributing, storing and 
transporting this type of fuel. One of the purest methods 
for producing hydrogen is the dissociation of water mole-
cules, but low-temperature electrolysis requires a greater 
amount of electrical energy and is an expensive process 
(Gupta 2008). The article describes the process of neural 
network management of a system of connected electroly-
tic cells for modeling high-temperature water steam elec-
trolysis. Generation of steam of the required temperature 
and electrolysis occur in such conditions due to the energy 
produced by high-temperature gas-cooled reactors (Cacu-
ci 2010). As a result, hydrogen is produced both with the 
use of thermal energy and its partial conversion into elec-
tricity. The development of new systems requires a tes-
ting process in order to determine the amount of hydrogen 
produced and estimate the designed installation efficiency 
at given geometrical parameters (tubular or planar elec-
trolytic cell (EC)), numbers of cells in electrolysis assem-
blies (channels or chambers, depending on the EC shape), 
parameters of porous electrodes, electrolysis temperature, 
current density and voltage. Physical testing is complica-
ted by the need to create high temperatures and the use of 

materials and alloys that are resistant to high temperatures 
and changes in mechanical properties due to the formati-
on of hydrides and methane because of the absorption of 
hydrogen by the installation materials.

Below is a description of the electrolysis unit designed 
to obtain the necessary physical parameters for simulati-
ons and the developed neural network architecture. The 
development of a neural network configuration algorithm 
is discussed in accordance with a specific feature of the 
simulation system, i.e., the availability of a source of in-
formation about the simulated process.

Electrolytic cell development

To eliminate the need for a physical experiment at po-
wer generation plants, it is proposed to use a system of 
coupled electrolyzers (Tomilova 1984), the layout of 
which is shown in Fig. 1.

The amount of hydrogen produced is controlled by 
changing the following parameters:

1.	 Limiting the current through each cell by means of 
a current mirror with a reflection coefficient of 1:8, 
made on the basis of a matched pair of TIP36C bi-
polar pnp-transistors with SQP emitter resistors (0.1 

Figure 1. Structural diagram of the installation for predicting the amount of hydrogen produced: 1. Filter to remove particles of 
electrodes; 2. Electrolytic cell with graphite electrodes; 3. Electrolyzer power supply system; 4. Peristaltic dosing pump; 5. Liquid 
resistor; 6. Electrolyte heat exchanger; 7. Diaphragm pump; 8. Flow divider; 9. Electrolyte drain tank; 10. Solenoid valve; 11. Tank 
with CuSO4 solution; 12. Connector; 13. Distilled water tank



Nuclear Energy and Technology 5(2): 129–137 131

Ohm). As a control current source, a Wilson current 
mirror based on TIP3055 npn-transistors (Gray Paul 
et al. 2009) was used (a total of two parameters per 
dual electrolytic cell (DEC)).

2.	 Regulating the pulsed electrolysis parameters by 
changing the pauses between direct current pulses, 
determining the moments of application of reverse 
current pulses, and superimposing an alternating 
current (AC) on a direct current (DC) according to 
a circuit with an additional inert electrode (the AC 
source is an ET190E electronic transformer). This 
process is necessary to control the morphology of 
electrolytic deposits on the electrodes, the redistri-
bution of crystallization centers and the dissolution 
of microdendrites and knobs, which contributes 
to grinding hydrogen bubbles and facilitates their 
separation from the cathode. Control is carried out 
by switching the electrolytic cell into the H-bridge 
made on 2SC3281 (npn) and 2SA1302 (pnp) tran-
sistors. (A total of four parameters per DEC: one 
parameter for each H-bridge and one parameter to 
determine time intervals for the AC imposition).

3.	 Changing the electrolyte temperature in a cell by heat-
ing the liquid resistors using CCFL inverters, made 
on the OZ9910GN pulse-width converter chip, and a 
group of FDS8958A dual field-effect transistors. To 
perform local electrolyte heating, an internal network 
of KNP-200 wire resistors (resistant to pulsations) with 
a nominal value of 100 Ohm is used: the resistors are 
evenly distributed throughout the cell volume and are 
heated in pulsed mode by discharging a battery of elec-
trolytic capacitors (six 4700 μF capacitors with a rated 
operating voltage of 100 V) through a BT138-600 thy-
ristor. (A total of four parameters per DEC: two for con-
trolling the inverters, two for controlling the heaters.)

4.	 Regulating the electrolyte concentration in the cells 
by peristaltic pumps (with a maximum flow rate of 
40 ml/min) and diaphragm pumps (with a maximum 
flow rate of 2 l/min). The electrolyte is diluted with 
distilled water from reservoir 13 (see Fig. 1) or in-
creased in concentration by adding copper sulfate 
solution from reservoir 11 (see Fig. 1) and subsequent-
ly pumped among the cells. The flow rate is regulated 
by pulse-width modulators made on the basis of an 
NE555 timer, Schottky rectifier (STPS41H100CT) 
and n-channel MOSFET transistor (STP80NF70) 
(Crecraft and Gergely 2002) (a total of six parameters 
per DEC: four for controlling the pumps, two for con-
trolling the electromagnetic valves).

5.	 Bubbling control using three diaphragm pumps (a 
total of six variables per DEC).

Therefore, to control electrolysis in one dual elec-
trolytic cell, it is necessary to control 22 parameters that 
completely determine the modeling process. The required 
number of dual cells is determined by the parameters of 
coordination with a real nuclear facility for hydrogen pro-
duction (Yan and Hino 2011).

The system input parameters, which are fed to the neu-
ral network input, are data on the steam electrolysis sys-
tem configuration and the reactor thermal energy distribu-
tion balance (OECD 2006). By controlling the electrolysis 
process parameters using a spiking neural network, it 
is possible to simulate the process of high-temperature 
steam electrolysis at a given scale, which determines the 
proportionality of hydrogen production for this model as 
compared to high-temperature nuclear plants for combin-
ed electric energy/hydrogen generation. Neural network 
control methods make it possible to synthesize the opti-
mal current form and pulsed electrolysis parameters to en-
sure the minimum time required to achieve a permissible 
prediction error.

Designing the neural network 
system for developing a hybrid 
modeling strategy

To control the parameters of the considered electrolytic 
cell system, it is proposed to use a spiking neural net-
work (Gerstner and Kistler 2002). Signals among neu-
rons are propagated as short electrical pulses, i.e., spikes. 
The force of stimuli has a direct impact on the number 
of spikes and the intervals between them. The basis of 
the spiking neural network construction is a neuron (Fig. 
2), the architecture of which is based on the principles of 
reverberant circuit operation (Maass and Bishop 2001). 
The neuron is made of two composite computing modu-
les: a modular lattice computing structure, which allows 
an increase in computing elements (Cichocki and Amari 
2002), and a cascade neural network structure (Haykin 
1999). The spiking network has dynamic properties that 
make it possible to organize an information processing al-
gorithm not only by setting weights but also by changing 
the connections between neurons. A population of neural 
elements is able to adaptively adjust the oscillation pro-
cess that synchronizes the neural network elements, due 
to which it is possible to generate spikes at certain time 
intervals. As a result, the neuron activity is determined by 
the input signals, the activity at the previous stage of ope-
ration as well as the state of the other neurons included in 
the reverberation circuit.

An artificially implemented axonal transport mecha-
nism plays an important role in maintaining a stable spi-
ke generation process (Sterratt et al. 2011) (Fig. 3). By 
controlling the characteristics of channels for transferring 
information among neurons, it is possible to turn the net-
work to asynchronous operation mode without a signi-
ficant change in the weighting coefficients, followed by 
additional training. This architectural feature minimizes 
the likelihood of creating separate neuron clusters within 
the spiking network with its local synchronization system.

The basis of the switching system is a magnetic am-
plifier with an AC output (Gottlieb 1998), designed 
from two modified transformers (B78386-P1116-A), in 
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Figure 2. Structural diagram of the neural element for constructing a spiking network

Figure 3. Structural diagram of the electro-optical transducer
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which the magnetic circuit is replaced by a ferrite rod 
core (M2000NM). Signals were fed from a population 
of seven neurons through a TDA8932T amplifier and an 
isolating EI14 audio transformer to a magnetic amplifier 
to form an output signal (Crecraft and Gergely 2002). To 
expand the possibilities of signal processing, an optoe-
lectronic system is used, which determines the strategy 
of interaction among spike populations. The output sig-
nal is converted by means of an analog measuring cir-
cuit made on the cascade switching of an LM3914 chip, 

an integrating circuit based on the LM358 operational 
amplifier and a laser diode into light pulses, the parame-
ters of which are determined by the sequence of spike 
pulses. The optical signals are processed by the system 
from an array of liquid crystal screens, cubic X-prisms 
and rectangular dichroic prisms (Saleh and Teich 2007). 
The basic cell of the optical system (see Fig. 3, the right-
hand subsystem) consists of a set of optical modulators, 
prisms and mirrors. The parameters of the liquid crystal 
optical filter (degree of darkening, sensitivity, delay be-

Figure 4. Optical signals after passing an array of prismatic elements

Figure 5. Neural group input signals
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fore changing the crystal orientation) are related to the 
adjustable parameters of the spike network. After pas-
sing through the optical array, the signal is subjected to 
optoelectronic conversion by means of the OPT101 pho-
todiode array. The photodiode output signal is an actua-
ting signal for the voltage-controlled generator, which is 
made on the ICL8038 chip with a TL082A operational 
amplifier. After passing through the integrating chain, 
the spike spreads through the network. Figure 4 shows a 
photograph of samples of light signals from a single op-
tical cell. Samples 1 and 2 exemplify neuron interactions 
through the optical medium to the training point when 
an initial network rhythm is observed. Samples 3 and 4 
show pulses of different intensity (passing spikes of dif-
ferent amplitudes) as well as combinations of pulses into 
groups (the light spot area expansion), indicating that the 
neural network attempts to stimulate photodetectors lo-
cated in a certain neighborhood of the photodetector line, 
which makes it possible, due to sequential stimulation, to 
obtain a spike with the required characteristics. Sample 
5 shows the interaction of spiking neurons after training.

The considered spiking neuron network design is sca-
lable, which makes it possible to design a network with 
the required computing power by simply combining op-
tical and electronic modules. The constructive elements 
are designed in such a way that a population of seven 
neurons together with a single cell of an electro-optical 
converter can form spike pulses with a given informati-
on coding system (Moss and Gielen 2001). This property 
of individual neurons is necessary to maintain the func-
tioning of the entire network when using optical infor-

mation processing and switching systems that can distort 
the transferred pulses. Let us consider the functioning of 
the neural network structure. Input signals are generated 
using functional periodic dependencies based on nested 
functions (Wai-Kai Chen 2005), which reflect the initial 
parameters of the problem.

Figure 5 shows possible input signals for the spike 
network; each signal is fed to the input of the correspon-
ding neural element. After the signals are combined by 
the electro-optical system, the output signal has the form 
shown in Fig. 6. Signal A in the figure corresponds to the 
output signal for the network that did not pass the training 
procedure, in which the weights and parameters of the 
electro-optical system were initialized with random num-
bers (a vector generalized lagged Fibonacci generator was 
used). Signal B shows the pulses produced after setting 
and configuring variable parameters.

The output signal of the neural network is represented 
by means of a modified pulse phase modulation method 
(Maass and Bishop 2001). The system involves signals 
from four neural elements of the spike network (Fig. 7). 
To unambiguously determine the pulse, it is necessary that 
its amplitude be at least 2 V with a length of less than 190 
μs. The moment of time, which determines the beginning 
of the information sequence decoding, is counted when 
three spikes appear in Neuron С and Neuron D is not ac-
tive (mark 0, Fig. 7). The activity of Neuron D is synchro-
nizing for the whole group of four signals; the appearance 
of a spike in Channel D is combined with the activity of 
Neuron C. If the spikes in C and D are not matched by 
more than 150 µs, the information is extracted from Chan-

Figure 6. Neural group output signals
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Figure 7. Coding information in a sequence of pulses from four neurons

Figure 8. Hydrogen yield dependences on system parameters

nel A, otherwise from Channel B. Information extraction 
is based on the time stamping of a spike pulse occurring in 
the observed neural activity channel (А or B).

In Figure 7, information extraction starts from Mark 
0. Spikes D.1 and C.1 are mismatched by less than 150 
µs; therefore, information is extracted from Channel A 
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(mark the pulse time in Channel A (Mark 1, Fig. 8) after 
the synchronizing spike in Channel D (Mark M0, Fig. 7)). 
Further, Spikes D.2 and C.2 are mismatched by more than 
150 µs; therefore, information is extracted from Channel 
B (mark the pulse time in Channel B (Mark 2, Fig. 7) 
after the synchronizing spike in Channel D (Mark M1, 
Fig. 7)). The procedure is repeated until the next moment 
of the beginning of reading information or termination of 
activity in Synchronizing Channel D.

The variable time interval between the synchronizing 
spike and the pulse of the corresponding neuron is used to 
represent the output neural network signal.

Configuring the spike neural 
network system and evaluating the 
forecast results

The considered structural elements of the spike neural 
network include variable parameters: weighting factors in 
the neuron, parameters of the lattice and cascade struc-
tures and parameters of the electro-optical system. The 
initial network topology is a structure consisting of three 
layers of spike neurons. A centralized global parallel se-
arch scheme was used as the training algorithm (Strongin 
et al. 2013). Each neural population was implemented on 
an ATxmega128A1 microcontroller. In this scheme, the-
se populations can be considered as “testing processors 
(TP)” (Strongin et al. 2013). The “control processor (CP)” 
transfers test points (parameters of each neural popula-
tion) to the TPs. After testing, all information is collec-
ted in the CP, which concludes about the effectiveness of 
potential parameters for the entire spike network. As an 
algorithm for generating test points, a scattered search al-
gorithm was used (Greshilov 2014).

The efficiency of hybrid hydrogen production mode-
ling using a high-temperature electrolysis system was es-
timated based on plotting the amount of gas produced de-
pending on the gas-cooled reactor characteristics and the 
electrolyzer parameters (Fig. 8). The parameters x1 (a set 
of electrolytic cell parameters) and x2 (reactor parameters) 

are defined as the sum of the weighted parameters charac-
teristic of a particular hydrogen production method:
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where wj are weighting coefficients; Q is the number of 
parameters; r is the distance between the input vector 
k and the eigenvector c; σ is the scale parameter. The 
weighted parameters adapt the system for a wide range 
of nuclear systems. All variables are normalized in ac-
cordance with the maximum physical limitations. The 
applicate shows the amount of hydrogen produced. A 
comparison of the modeling process (Fig. 8b) with the 
results obtained in practical installations (Yan and Hino 
2011, OECD 2006) (Fig. 8a) allows us to conclude that 
neural network systems can be used to control the hybrid 
modeling processes.

Conclusion

The development of new electrolytic cell configurations 
to increase the efficiency of nuclear energy is an impor-
tant issue when hydrogen is used as the basis for clean 
energy. Difficulties arising from the design of hydrogen 
cogeneration systems in nuclear power engineering can 
be successfully overcome with the use of neural network 
decision-making methods, which make it possible to quic-
kly assess the effectiveness of structural changes in the 
system. The results obtained during the work confirm the 
effectiveness of intelligent technologies that implement 
adaptive control of hybrid modeling processes in order 
to organize the most feasible production of hydrogen for 
a specific process, the parameters of which can be modi-
fied depending on the specific use of the reactor thermal 
energy. In addition, the results of the study confirm the 
feasibility of using a combined functional structure made 
on the basis of spiking neurons to correct the parameters 
of the proposed electrolytic system. The proposed simu-
lation strategy can significantly reduce the consumption 
of computational resources in comparison with models 
based only on neural network prediction methods.

References
�� Cacuci DG (2010) Handbook of Nuclear Engineering. Springer, 

3574 pp. https://doi.org/10.1007/978-0-387-98149-9
�� Cichocki A, Amari SI (2002) Adaptive Blind Signal and Image 

Processing: Learning Algorithms and Applications. Wiley, 586 pp. 
https://doi.org/10.1002/0470845899

�� Crecraft DI, Gergely S (2002) Analog Electronics: Circuits, Systems 
and Signal Processing (1st edn). Butterworth-Heinemann, 425 pp. 
https://doi.org/10.1016/B978-075065095-3/50001-5

�� Gerstner W, Kistler WM (2002) Spiking Neuron Models: Single 
Neurons, Populations, Plasticity. Cambridge University Press, 496 
pp. https://doi.org/10.1017/CBO9780511815706

�� Gottlieb I (1998) Practical Transformer Handbook. Elsevier Science 
& Technology, 192 pp.

�� Gray PR, Hurst PJ, Lewis SH, Meyer RG (2009) Analysis and De-
sign of Analog Integrated Circuits (5th edn). JohnWiley & Sons, Inc., 
896 pp.

�� Greshilov AA (2014) Mathematical Methods of Decision-Making 
(2nd edn). MGTU Publ., Moscow, 647 pp.

�� Gupta RB (2008) Hydrogen Fuel: Production, Transport, and Stor-
age. CRC Press, 624 pp. https://doi.org/10.1201/9781420045772

�� Haykin S (1999) Neural Networks – A Comprehensive Foundation. 
(2nd edn). Prentice Hall Inc., 1104 pp.

https://doi.org/10.1007/978-0-387-98149-9
https://doi.org/10.1002/0470845899
https://doi.org/10.1016/B978-075065095-3/50001-5
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1201/9781420045772


Nuclear Energy and Technology 5(2): 129–137 137

�� Maass W, Bishop CM (2001) Pulsed Neural Networks. A Bradford 
Book, 377 pp.

�� Moss F, Gielen S (2001) Neuro-informatics and Neural Mod-
elling. North Holland, 1080  pp. https://doi.org/10.1016/S1383-
8121(01)80002-6

�� OECD (2006) Nuclear Production of Hydrogen: Nuclear Science. 
Third Information Exchange Meeting, Oarai, Japan 5–7 October 
2005, Organisation for Economic Co-operation and Development, 
Nuclear Energy Agency. OECD Publishing, 414 pp. https://www.
oecd-nea.org/science/pubs/2004/5308-production-hydrogen.pdf

�� Saleh Bahaa EA, Teich MC (2007) Fundamentals of Photonics. Wi-
ley-Interscience, 1200 pp.

�� Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of 
Computational Modelling in Neuroscience. Cambridge University 
Press, 404 pp.

�� Strongin RG, Gergel VP, Grishagin VA, Barkalov KA (2013) Par-
allel Computations in Global Optimization Problems. MGU Publ., 
Moscow, 280 pp. [in Russian]

�� Tomilova AP (1984) Applied Electrochemistry. Textbook for high 
schools. Khimiya Publ., Moscow, 520 pp.

�� Wai-Kai C(2005) Nonlinear and Distributed Circuits. CRC Press, 352 pp.
�� Yan XL, Hino R(2011) Nuclear Hydrogen Production Handbook. 

Series: Green Chemistry and Chemical Engineering. CRC Press, 939 
pp. https://doi.org/10.1201/b10789-4

https://doi.org/10.1016/S1383-8121(01)80002-6
https://doi.org/10.1016/S1383-8121(01)80002-6
https://www.oecd-nea.org/science/pubs/2004/5308-production-hydrogen.pdf
https://www.oecd-nea.org/science/pubs/2004/5308-production-hydrogen.pdf
https://doi.org/10.1201/b10789-4

	Application of spiking neural networks for modelling the process of high-temperature hydrogen production in systems with gas-cooled reactors*
	Abstract
	Introduction
	Electrolytic cell development
	Designing the neural network system for developing a hybrid modeling strategy
	Configuring the spike neural network system and evaluating the forecast results
	Conclusion
	References



