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Abstract
Nowadays, Nuclear Power Plant (NPP) is one of the intended energy resources for the world requirement energy in 
future, and nuclear power plants provided 11 percent of the world’s electricity production in 2014. Meanwhile, nuclear 
power plant safety has always been one of the most critical issues in the world. In this paper, the nuclear power plant 
safety improvement using Soft Computing Techniques were analyzed. For this purpose, the support system based on 
Neuro-Fuzzy Diagnosis System (NFDs) method and Genetic Algorithms (GAs) approach were used. The obtained 
result showed that the first symptom is P3 (pressurizer pressure) and second order symptom is P2 (core coolant average 
temperature) in both approaches. The comparison between the NFDs method and the GAs approaches indicated that 
the GAs in data test results was faster than the NFDs results.
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1. Introduction

Nuclear Power Plants (NPP) are the world’s energy re-
sources, along with hazardous radioactive material, that 
incident not only limited to a specific location but also 
cover an extensive range. One of the most critical issues 
in designing, manufacturing and operating time of NPP’s 
is the safety system. So, updating and improving the sa-
fety of nuclear power plants is one of the most critical is-
sues in the safety of Nuclear Reactors (NR). Also, there is 
an always incremental demand for operating NPPs more 
cost-effectively with a high capacity factor. To improve 
the capacity factors, safety, and prophylactic actions are 
suitable to deal with potential accidents in NPPs.

Moreover, more cost-effectively with a high capacity 
factor increase the needs of techniques for diagnosing and 
prognosis the NPPs defect. In generality, prognostic is an 

essential issue in Reliability, Availability, Maintainabili-
ty, and Safety (RAMS). The primary aim of a prognostic 
system is to demonstrate whether the Structure, System 
or Component (SSC) of interest can perform its function 
throughout its lifetime with rational assurance and, vice 
versa, to evaluation the Remaining Useful Life (RUL) 
(Al-Dahidi et al. 2016).

Computer programs and computer-based diagnostic 
systems were widely studied area to support NPP opera-
tors during abnormal conditions (Dorin-Mirel and Robert 
2015, Coban 2010, Hines et al. 2005). The main sections 
of a Diagnostic System (DS) are fault detection and isola-
tion. A fault indicates a deviation concerning the expected 
system behavior. Fault detection consists in the generation 
of symptoms from the fault indicators and the evaluation 
of the time of detection. Fault isolation determines, from a 
set of symptoms, the kind and the location of the primary 
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fault and relates it to a physical component whose behavi-
or is not consistent (Isermann 1997). Fault detection and 
diagnosis (FDD) is the process to detect, isolate, and iden-
tify faults in a system. Fault detection determines whether 
faults are present. Following fault detection, fault isolation 
determines the location of the fault. Fault identification 
determines the size and time-variant characteristics of the 
fault (Evsukoff and Gentil 2005).

Classification approach is based on process data or 
expert knowledge about the system and its misbehavi-
or. Relevant symptoms are detected to be representative 
of each type of failure. The symptoms and faults have 
a relation that obtained by supervised learning when 
faults are known a priori, for example in this situation 
the system decision is tuned to correspond to the right 
answer from a training set of known examples by an 
expert. The diagnostic system is an arranger that must 
then identify; the actual situation represented by a new 
symptom vector and associates it to one of the known 
faults, in real time. The neural networks are one of the 
possible classifiers for non-linear classification and 
learning (Evsukoff and Gentil 2005).

WWER-1000 is a Russian type of a pressurized water 
reactor (PWR). The main difference between the PWR 
and WWER is related to the design of the fuel assembly 
and the core geometry. The WWER-1000 reactor produ-
ces 3000 MWth in maximum power which is generated 
from 163 hexagonal fuel assemblies (Abbasi 2018, Hu et 
al. 2015, Mirekhtiary and Abbasi 2018).

The Neuro-Fuzzy Diagnosis System (NFDs) method and 
Genetic Algorithms (GAs) method is validated with NPP sa-
fety. In this research, we focus on the area of abrupt faults 
similar by Neuro-Fuzzy Diagnosis System and Genetic Al-
gorithms methods that most of them occurring at WWER re-
actor. Abrupt faults are injected into a nonlinear WWER si-
mulator developed by MATLAB SIMULINK environment.

The rest of the paper is organized as follows. Secti-
on 2 introduces the fuzzy diagnostic and Genetic Algo-
rithms methods. In this part, the theoretical aspects of the 
Neuro-Fuzzy Diagnosis System and Genetic Algorithms 
for Fault Detection are presented. Also, in this section, a vi-
tal fault scenario in WWER reactor are supposed. Section 
3 describes the results and discussion due to the assumed 
scenario. Finally, the conclusions are drawn in Section 4.

NPP Nuclear Power Plants
NR Nuclear Reactors
NPR Nuclear Power Reactor
RAMS Reliability, Availability, Maintainability 

and Safety Structure
SSC Structure, System or Component
RUL Remaining Useful Life
DS Diagnostic System
FDD Fault detection and diagnosis
MS MATLAB SIMULINK
NFDs Neuro-Fuzzy Diagnosis System
GAs Genetic Algorithms
WWER Water-Water Energetic Reactor (A Russian 

type nuclear reactor)
ɛ(t) Error in output
J(t) Error function in t time
LPSI Low-pressure safety injection
HPSI High-pressure safety injection

GA Genetic Algorithms
SO Selection Operator
CO Crossover Operator
MO Mutation Operator
PWR Pressurized Water Reactor
Tave  Core coolant average temperature
Pp Pressurizer pressure
Lp Pressurizer water level
PSG Steam generator pressure
Wstm Steam generator steam flow
Lsg Steam generator water level
Lcr Condensate receiver water level
Pfw Feedwater pressure
Wfw Feedwater flow
Tfw Feedwater temperature
MATLAB MATrix LABoratory
UP Upper Plenum
PCT Peak Cladding Temperature

2. Methodology
In this section, we introduce the Neuro-Fuzzy method and 
Genetic Algorithms (GA) approach in technical point of 
view. Also, the WWER power plant with a critical parame-
ter is presented in the subsection. MATLAB environment 
is used to implement both Neuro-fuzzy and genetic algo-
rithm techniques. In this framework, the fault and alarm 
design system of WWER-NPP have been employed.

2.1 Neuro-Fuzzy system

A neuro-fuzzy system is a fuzzy logic system equipped 
with a training algorithm. The fuzzy logic system is con-

structed from a collection of fuzzy if-then rules, and the 
training algorithm adjusts the parameters of the fuzzy 
logic system based on numerical information (mainly in-
put-output pairs). The structures of neuro-fuzzy systems 
include numerical information and linguistic. Indeed, the 
fuzzy logic systems are made from fuzzy if-then rules. 
Nevertheless, numerical information is combined by 
training the fuzzy logic system to match the input-output 
pairs (Ruan 2013). Schematic of the fuzzy neural system 
is shown in Fig.1 (Ruan 2000).

A neuro-fuzzy system consists of the following com-
ponents: neural inputs, neural outputs, neural networks, 
fuzzy inference, learning algorithm, knowledge base, and 
decisions. The input data is processed in neural networks 

Nomenclature
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where the training algorithm and input data are adjusted. 
The neural outputs resulted in neural networks is evalu-
ated by the fuzzy inference section. In this section, the 
output data and knowledge base are interacting. There are 
two main types of fuzzy inference methods known in the 
literature: Mamdani and Takagi-Sugeno. Generally, Tak-
agi-Sugeno structures are frequently used if knowledge 
can be extracted from raw data and Mamdani systems are 
preferred when knowledge is given by human experts in 
the form of linguistic expressions (Fuller 2000).

All of the Nuclear Power Reactors has strict alarming 
and FDS system. This system supported by multi-level 
alarm and fault diagnosis techniques. Also, each part of 
NPP has its own DS section as NFDS can evaluate the 
control system of the NPP unit. Also, all parts of the NPP 
can be tested by a pattern recognition NFDS approach 
(Zio and Gola 2006).

2.2 Genetic algorithm method

The concept of GA is obtained from the fact that its ope-
rations are based on the mechanics of genetic adaptation 
in biological systems. The efficiency of the genetic algo-
rithm has been proven in many respects such as nuclear 
power plant safety and fuel loading (Wang et al. 2007, 
Ayoobian and Mohsendokht 2016, Kumar and Tsvetkov 
2015, Saber et al. 2015). The GA approach starts by con-
sidering the bias and weight values of the neural fuzzy 
diagnosis system as the initial population. In this me-
thod the fitness function is the sum square equation and 
expressed as follows (Muzzammil and Ali 2013):

f x xi
i

n
( ) � � �

�
� 2

1

, (1)

Applying of fitness values, the GA would then evolve 
a new population for the network to try. After several ge-
nerations, a population of several “good” structures with 
parameters evolves, and fittest topology and parameters 
are used as the best construction of the neural network. A 
flow chart of GA is shown in Fig.2.

As seen in the flowchart diagram, after an initial po-
pulation of chromosomes is randomly generated, then the 
typical genetic algorithm evolves the population through 
the following three operators.

Selection Operator (SO), Crossover Operator (CO), 
Mutation Operator (MO).

The SO section: This section selects individuals (chro-
mosomes) in the population for reproduction.

The CO section: In the crossover section randomly 
chooses a crossover site along the bit strings and exchan-
ges the subsequences before and after that crossover site 
between the two individuals to create two offspring.

The MO section: This portion is the new individuals 
that will have some of their bits flipped (Fuller 2000).

2.3 WWER nuclear power reactor fault scenario

WWER is a Russian type of a pressurised water reactor 
(PWR) that it is an intricate system which has many vari-
ables influencing its dynamic behavior. WWER reactors 
contain 17 critical points, and we select one of them Loss 
of Coolant Accident (LOCA) that significant fault in the 
reactor. Those critical points need to individual fault diag-
nosis system. Some essential recommendations have been 
proposed including the passive safety of nuclear reactors. 
There are some essential factors for future reactor designs 
as following (Carelli et al. 2004).

• The reactor should be inherently safe and not in 
need of external safety systems. For example, in the 
emergency of the reactor operators can withdraw 
all control rods and simultaneously stop all coolant 
flow, without any adverse impact.

• The issue of the safety of the reactor must be obvi-
ous to both the regulators and the public.

• The reactor should be simple to operate, upgrade 
and maintain for limited staff with less technical 
expertise.

• Online capability to perform maintenance and fuel 
loading.

Neural                                                             Neural                                                       

Inputs                                                              Outputs                                                               Decisions

Fuzzy

Inference

Knowledge-Base

Learning

Algorithm

Figure 1. Schematic of the fuzzy neural system.

 

 

Figure 2. The diagram of the genetic algorithm flowchart.
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• The system should ensure a minimal environ-
mental impact.

In this scenario, we consider LOCA fault occurs, and 
the main symptoms will be revealed. To simulate this 
fault, a fault block is placed at the reactor hot leg. Af-
ter a set time, the primary coolant flow in the hot leg is 
switched from its normal operational value to a reduced 
value through an SW triggered by a simple step input. 
The trigger time is 10 sec, which is typical. The primary 
coolant flow is changed from its average value to a leak-
age value (70% of the regular primary coolant flow). The 
resulting symptoms of the LOCA fault are listed in Table 
1. The sequence of main events after LOCA and time 
presented in Table 2 (Sabotinov and Srivastava 2010). 
The first event is HPSI signal (decrease pressure para-
meters (with t=0.113 s, and second event is first PCT 
parameter with t=5.72 s. The other events will be after 
these phenomena.

2.4 Weight coefficient

Suppose a labelled training set ϕ including ρ member, that 
each member (x(t), v(t))∈ϕ corresponding to a time va-
lue. The vector x(t) is the vector of the observed variables 
at t and v(t)=[v1(t),..,vm(t)], where vj(t)=µωj x(t), contains 
the correct membership values of x(t) to each fault class. 
Corresponding to each x(t) as input, the diagnostic system 
output is the vector y(t)=[y1(t),..,ym(t)]. The discussed v(t) 
as output able to written from the y(t) as output:

V(t) = y(t) + ɛ(t) (2)

where is the error in output calculation. The classifier’s 
parameters are calculated by optimizing the output error. 
Generally, the quadratic output error function is adopted, 
which is computed as (Evsukoff and Gentil 2005):

J J t y t v t y t v t
t N t N

T� � � �
� �
� �1

2

1

21 1... ...

( ) ( ( ) ( )) ( ( ) ( ))� , (3)

where J(t) is the error function at time t, and the supers-
cript T denotes the transpose.

3. Results and discussion

According to the defined scenario of WWER-NPP in the 
fault LOCA, the output response of the weight and the 
bias values are calculated using MATLAB toolboxes. The 
Bias Matrix elements resulted from MATLAB toolboxes 
were shown in Table 3. Also, the NFDS and GA output 
results are presented in Table 4.

The bias data rang for NFDS and GA approaches are 
(-2.8814 to 1.7124) and (-3.8142 to 4.7713), respectively. 
This means that the constructed neural network by GA is 

Table 1. The Loss of Coolant Accident (LOCA) fault in WWER reactor and influenced parameters.

Case No. Parameter Symbol parameter Steady-state values Limit values Symptoms*
P1 Pressurizer water level Lp 1188 mm  ±38 mm –
P2 Core coolant average temperature Tave 289 °C  ±1 °C +
P3 Pressurizer pressure Pp 15.5 MPa  ±69 kPa –
P4 Steam generator pressure Psg 5.2 MPa  ±15.5 kPa +
P5 Steam generator steam flow Wstm 26.15 kg/s  ±4.5 kg/s –
P6 Steam generator water level Lsg 3200 mm  ±255 mm –
P7 Condensate receiver water level Lcr 2337 mm  ±76 mm +
P8 Feedwater pressure Pfw 8.7 MP  ±20.68 kPa +
P9 Feedwater flow Wfw 25.85 kg/s  ±4.5 kg/s –
P10 Feedwater temperature Tfw 212 °C  ±0.55 °C +

*(–) : Decline; (+):Increase

Table 2. The sequence of main events after LOCA and time.

Sequence event Time (s)
Start of the double-ended break in cold leg 0.0
Station blackout 0.0
Start of the reactor scram 0.0
HPSI signal (Pressure in UP<10.9 MPa) 0.113
Flashing begins in UP 0.9
First PCT (1032 °C) 5.72
Start of hydroaccumulators 7.02
Primary pressure below secondary pressure 7.4
Cladding broken in mesh 21 8.15
Complete closing of steam discharge valve 10.0
Complete closing of feedwater valve 10.0
Pressurizer empty 14.1
LPSI signal at 2.5 MPa 14.18
HPSI0LPSI start (delay of 40 s for DG start after loss of 
offsite power) 40.0

End of hydroaccumulator injection 88.4
End of calculation 120.0

Table 3. The Bias Matrix elements in NFDS and GA.

Case No. NFDS GA
P1 0.8427 2.3815
P2 -1.7108 1.5001
P3 -2.8814 0.0012
P4 0.7201 -3.8142
P5 0.2563 4.7713
P6 -2.4180 0.1843
P7 1.7124 -0.1054
P8 1.4581 0.0284
P9 -2.4001 0.0214
P10 -0.8022 2.4710
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wider than NFDS. So, GA approaches is better than NFDS 
for the LOCA reactor accidents data. The results corres-
pondence to weights and biases values proves the output.

The calculated weights and biases values of P3 and P2 
are 0.9169 (with NFDS method), 0.9915 (with GA me-
thod); and 0.8424 (with NFDS method), 0.8918 (with GA 
method), respectively. The appearance of symptoms in 
GA and NFDS approaches are shown in Fig. 3a, 3b. This 
figure presents the time evolution of process variables de-
flection each column demonstrates a sampling time, and 
each line demonstrates a variable symptom from right 
to left. As seen in output results, the first symptom is P3 
(pressurizer pressure) and second order symptom is P2 
(core coolant average temperature) in both approaches. 
Whereas, in the GA method the symptom P3 is appeared 
around 10s after the fault time, while in the NFDS it can 
be seen that for around 20 s after the fault time (t=120 s). 
So, the reaction time by GA method is faster than NFDS 
method. (steam generator pressure) with result of the tem-
perature increase is the damage to the core and its melt. 
So, secondary damage is and the consequence will be an 
explosion in the reactor building.

4. Conclusion

In this research, a general framework of soft computing 
techniques for the NPP safety investigation is proposed, 
for this purpose, the support system based on Neuro-Fuz-
zy Diagnosis System (NFDs) method and Genetic Algo-
rithms (GAs) approach were used. Hence, the LOCA fault 
of WWER nuclear power reactor was defined as a critical 
scenario. The weight and the bias values of NFDS and GA 
were calculated using MATLAB toolboxes.

In this scenario, we accomplished a GA approaches 
which can create the high-performance neural network 
structure for a given input data and the corresponding 
target accident such as LOCA fault. The LOCA fault 
appearance is recognized with ten common symptoms. 
The obtained result showed that the first symptom is P3 
(pressurizer pressure) and second order symptom is P2 
(core coolant average temperature) in both approaches. 
The comparison between the NFDs method and the GAs 
approaches indicated that the GAs in data test results was 
faster than the NFDs results.

An essential contribution of this work is the ability 
of the output results to represent qualitatively in real 
time. In other words, in an intelligent interface, the 
symptoms and the fault relationship, allowing human 
experts to understand, validate classifier results and ac-
ceptable decision.
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