
Verification on application program generation and
loading for safety systems of nuclear power plants
based on the reverse engineering method*
Mikhail A. Belonosov1, Vladimir L. Kishkin1,2, Sergey A. Korolev2

1	 FSUE VNIIA 22 Sushchevskaya str., Moscow, 127055 Russia
2	 NRNU MEPhI, 31 Kashirskoe shosse, Moscow, 115409 Russia

Corresponding author: Mikhail A. Belonosov (mbelonosov@vniia.ru)

Academic editor: Georgy Tikhomirov ♦ Received 15 August 2018 ♦ Accepted 17 November 2018 ♦ Published 13 December 2018

Citation: Belonosov MA, Kishkin VL, Korolev SA (2018) Verification on application program generation and loading for safety
systems of nuclear power plants based on the reverse engineering method. Nuclear Energy and Technology 4(4): 223–228. https://
doi.org/10.3897/nucet.4.31868

Abstract
The article describes an automated verification method used for application software of control safety systems based
on the TPTS-SB equipment. Verification is performed by comparing two mathematical models (oriented graphs): one
obtained by processing the original design data, i.e., graphical functional diagrams, and the other formed by reversing
the program code loaded from the controller. The vertices in both graphs are functional blocks of mathematical and
logical operations; the edges are connections between them. The constructed mathematical models undergo a compari-
son, covering the vertices and edges of the graphs as well as the memory cells and values of constants. The equivalence
of mathematical models proves the correspondence between the program code and the initial set of design functional
diagrams.

The proposed automated verification method makes it possible to prove that no distortion is introduced into the program
during the process of converting graphical functional diagrams into the program code with its subsequent translation
and loading into the controller. It is postulated that any distortions will be detected during the verification procedure,
which is performed every time after loading the code into the controller.

The solution provides an acceptable speed when large volumes of vector graphics stored in a relational database are
processed, and makes it possible to visualize the verification results. The proposed method is implemented in the
GET-R1 instrumentation tools for TPTS-SB and is used in designing and verifying the application software of the
safety systems at the Belarusian NPP.

Keywords
Verification; reverse engineering; code generation; safety systems; controller; mathematical model; instrumentation tools

Introduction

Specialists of the FSUE VNIIA have developed a techno-
logical software/hardware complex (TPTS-SB) for digi-

1tal control safety systems (CSS) of NPP instrumentation
and control (I&C) systems. These systems are assigned
the most important task of ensuring nuclear safety at po-
wer units during beyond-design-basis accidents; therefo-

Nuclear Energy and Technology 4(4): 223–228
DOI 10.3897/nucet.4.31868

Research Article

Copyright Belonosov MA et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which per-
mits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*	 Russian text published: Izvestiya vuzov. Yadernaya Energetika (ISSN 0204-3327), 2018, n. 2, pp. 146–156.

mailto:mbelonosov@vniia.ru
https://doi.org/10.3897/nucet.4.31868
https://doi.org/10.3897/nucet.4.31868

Belonosov MA et al.: Verification on application program generation and loading for safety systems...224

re, they are subject to the most stringent requirements for
software diversity, reliability and correctness. The TPTS-
SB software/hardware products were developed to meet
all modern requirements for such systems.

The application programs of TPTS-SB-based control
safety systems are created as graphical functional di-
agrams by means of the GET-R1 tool environment (Be-
lonosov et al. 2015) in the problem-oriented language
(Standard IEC61131 2003, Zyubin 2005). Man-made
graphical control algorithms are tested for compliance
with the design requirements for application programs for
the TPTS-SB equipment; then the program code is auto-
matically generated in the problem-oriented language and
translated into a binary representation (byte-code). The
translated byte-code is loaded into a controller.

The article describes a standard procedure for verifi-
cation of an application program after it is loaded into
the controller, including reading from the controller and
reverse engineering from the byte-code into a graphical
representation of the algorithm.

It is postulated that, in the process of converting
graphical algorithms into the program code, translating
and loading the code into the controller, there are no hid-
den distortions in the program: any distortion will be de-
tected by means of the proposed verification procedure.

TPTS-SB system architecture and
programming principles

TPTS-SB is a software/hardware system with built-in
hardware/software variety designed to build NPP digital
control safety systems. The built-in variety is achieved
due to division by two independent different implemen-
tations: Diversities A and B, which duplicate each other,
are functionally equivalent, but differ in hardware and
software. The arrangement and architecture of TPTS-SB-
based software/hardware systems are described in detail
in (Timohin et al. 2015, Naritz et al. 2015).

Fig. 1 shows the structure of an integrated TPTS-SB-
based CSS.

Logical processing in Diversities A/B is performed by
programmable automation processor modules (APM).
These controller modules read cyclically the data from in-
put modules, execute a user program using a special inter-
preter, and supply signals to output modules and priority
control modules.

To program the APMs, the STEP-S programming lan-
guage is used, which includes logical and arithmetic in-
structions as well as complex technological ones, such as
integration, signal limiting, voting, etc. A program written
in the STEP-S programming language is a strictly linear
sequence of instructions that does not contain cycles and
transitions. Each instruction contains a strictly defined set
of arguments and presents an operator of the form

CMD opd1 ... opdN … value1 … valueN

where CMD is the alphanumeric sequence indicating
the instruction; opd (operand or marker) is the symbolic
address of the APM memory cell; value is the numeric or
symbolic constant.

To be loaded to the APM, a STEP-S program is trans-
lated into a binary representation (byte-code) while the
program structure remains unchanged.

Initial process of developing and
loading application programs

STEP-S programs are the result of processing a large num-
ber of control algorithms that are developed graphically in
the language of functional diagrams (Standard IEC61131
2003, Zyubin 2005). These diagrams consist of functional
blocks denoting arithmetic, logical, or complex technolo-
gical operations. The inputs and outputs of the functional
blocks are interconnected; thus, the functional diagram
is a graphically depicted sequence of calculations. Each
function block is preassigned with a patterned sequence
of STEP-S instructions containing at least one instruction.

As an example, Fig. 2 shows a functional diagram of pro-
cessing signals from seismic sensors by voting, taking into
account the reliability of the signals and issuing an emergen-
cy protection signal. Table 1 shows a fragment of the resul-
ting program – the generated sequence of instructions in the
STEP-S language corresponding to the functional diagram.

Each functional block shown in the diagram is conver-
ted into a sequence of one or more instructions. The code
is generated in four stages.

1.	 APM memory cells (markers) necessary for calculati-
ons and storing the results are estimated and assigned.

2.	 The order of calculations is determined. The place
where the instructions corresponding to a specific func-
tional block enter the resulting program is determined
by this block sequence number which is automatically
calculated by topological sorting of an acyclic orien-
ted graph – a mathematical model corresponding to
the APM functional diagrams (Tarjan 1971). The num-
bers of functional blocks in Fig. 3 and the numbers of
STEP-S instructions in Table 1 fit together.

3.	 The design data integrity and correctness as well as
compliance with the formal design rules for the TPTS-
SB platform are automatically checked. In case of er-
rors, generation is terminated.

4.	 The sequence of functional blocks is processed as
determined at Stage 2. Template instructions corres-
ponding to each functional block are inserted into the
resulting program, and previously calculated memory
cells and values are entered.

All the generation stages are performed automatical-
ly. The resulting program undergoes the translation stage,
and then is loaded into the APM of TPTS-SB in the form
of byte-code.

Nuclear Energy and Technology 4(4): 223–228 225

Reverse engineering of a program
into graphical or tabular
representation

When designing NPP control safety systems, it is neces-
sary to prove the correctness of all stages of code gene-
ration, translation and loading as well as the absence of
distortions in the resulting program as compared to the
graphics algorithm. To do this directly is extremely diffi-
cult for the following reasons:

–	 rigorous proof of the correctness of all programs ope-
rating at different code generation stages is a labor-in-
tensive process;

–	 there is no guarantee that the generation process will
not fail, which will affect the data integrity. A failu-
re can also be caused by external factors, such as data
transmission errors, and internal factors, such as hid-
den program errors, data read/write errors, etc.

Therefore, the only acceptable way to prove the cor-
rectness of the program is to develop a procedure for re-
verse engineering of the generated and loaded program
into a graphical or tabular representation and to compare
the restored data with the original project. At the same
time, a graphical representation is a general functional di-
agram, which includes all functional blocks from which
the APM program is generated and connections between
them; a tabular representation is a list of all functional
blocks and their parameters in a tabulated form. However,

this proof is also associated with certain difficulties. The
program generated in the STEP-S language does not have
the following data:

–	 information on whether the STEP-S instructions be-
long to a specific control algorithm;

–	 graphic information necessary for dividing the graphics
into diagrams and determining the coordinates of func-
tional blocks;

–	 designations of algorithms, inscriptions and decoding
necessary for users to understand the algorithm;

–	 information about the graphic implementation of func-
tional blocks (several icons can correspond to the same
functional unit).

Table 1. Fragment of the STEP-S application program.

No. STEP-S instruction
1 NOT M,133 M,141
2 2/4-FS ET,4,9 ET,2,10 ET,5,11 M,140 M,145 M,146
3 NOT M,133 M,142
4 AND-3 M,150 M,141 M,135 M,152
5 2/4-FS2 M,138 ET,4,9 ET,2,10 ET,5,11 M,153 M,154
6 NOT M,135 M,143
7 AND-3 M,133 M,153 M,143 M,155
8 2/4 M,138 ET,4,9 ET,2,10 ET,5,11 M,147
9 B-DFLT M,147 M,148 M,149 1 1
10 NOT M,135 M,144
11 AND-3 M,142 M,156 M,144 M,158
12 B-LADK M,143 0
13 2/4-FS M,138 ET,4,9 ET,2,10 ET,5,11 M,156 M,157
14 OR-4 M,158 M,155 M,152 M,146 M,159
15 B-DFLT M,147 M,150 M,151 1 1

Figure 1. Integrated TPTS-SB-based CSS: EP – emergency protection; MCR – main control room; BCP – backup control panel;
ULCS – upper level control system; CSS – control safety system; EPA – emergency protection automatics; IM – interface module;
CM – communication module.

Belonosov MA et al.: Verification on application program generation and loading for safety systems...226

Therefore, it is impossible to completely restore the
original graphical representation of the control algo-
rithms using the program code without involving the
project information.

However, to prove the correctness of the code gene-
ration and loading procedures, it is not required to com-
pletely restore the graphics. Moreover, with large project
volumes, these procedures will take an unreasonably long
time. Instead of full restoration, it is proposed to construct
mathematical models of the project in the form of graphs
oriented to different source data: one graph is constructed
according to the project; the other is constructed accor-
ding to the program code. The vertices in both graphs are
functional blocks of mathematical and logical operati-
ons, while the edges are connections between them. The
constructed mathematical models undergo a comparison,
covering the vertices and edges of the graphs as well as
the memory cells and values of constants. The equiva-
lence of mathematical models is the proof of the corres-
pondence between the program code and the initial set of
project functional diagrams. Fig. 3 shows a mathematical
model for the above functional diagram.

The reverse engineering procedure is implemented in-
dependently of the code loading, translation, and gene-
ration programs. Restoration is performed in six stages.

1.	 The byte-code is read from the APM and back-transla-
ted into a string representation in the STEP-S language.

2.	 A list of STEP-S instructions is created for the functio-
nal blocks from the library and this list is sorted by the
number of instructions in each block.

3.	 A search is carried out for template sequences of the
functional blocks in the program code and the program

is split into corresponding fragments. Each fragment of
the STEP-S instructions is replaced by the correspon-
ding functional block.

4.	 The memory cells (markers) and constants from the
code are inserted into the inputs and outputs of the
functional blocks.

5.	 The connections between the functional blocks are de-
termined by the correspondence of the memory cells
(if the same marker is assigned to the input of one
block and the output of the other, then these input and
output are connected). At the end of this stage, there
is already a full-fledged oriented graph constructed by
the program code.

6.	 An identical oriented graph is constructed (Filatova
2012) according to the project (database). At the same
time, the sequence of the functional blocks and con-
nections between them is already stored in the databa-
se. The remaining project information is ignored.

The result of the comparison of these two oriented
graphs can be visualized in a tabular form or in the form
of a general functional diagram, which includes all the
APM algorithms. When the comparison results are vi-
sualized in the form of a general functional diagram, it
is considered that different graphical representations of
the same function, for example, the vertical and hori-
zontal image of the AND2 function (conjunction of two
boolean values), are invariant with each other. There-
fore, in comparison, it is reasonable to use a graphical
version of the blocks, which is the most suitable from
a visual point of view. The functional diagrams gene-
rated by the code and the project of the same versions
will be identical.

Figure 2. Functional diagram of processing signals from seismic sensors.

Nuclear Energy and Technology 4(4): 223–228 227

Advantages in comparison with
known solutions

There is a known procedure for verifying the code genera-
tor of the SPACE tools (Miedl 1996) for the TELEPERM
XS (AREVA) software/hardware package. The program
that performs verification is called Retrans and was deve-
loped by the staff of the Institut fur Sicherheitstechnologie
(ISTec). Retrans is an independent procedure for a project
reverse conversion from the C code to a software repre-
sentation with a subsequent comparison. In the restorati-
on process, Retrans uses both the program code itself and
additional project information contained in the generated
source code as comments.

The solution applied to TELEPERM XS does not ve-
rify the code translation and loading stages where errors
may occur. Verification of the generated C code proves
only the correctness of the generation process, but cannot
serve as proof of the identity of the project and the compi-
led program loaded into the controller.

The solution proposed for the TPTS-SB equipment
is more complete, since the entire processing chain is
verified (including generation, translation, and loa-
ding). In this case, the project mathematical model is
restored completely independently without any project
information involved. In addition, the use of graph mo-
dels makes it possible to clearly visualize the compari-
son results using the hierarchical embedding algorithm
of graphs (Baburin 2018, Spоnemann et al. 2009). The
probability that two independent errors will occur in the
code generator and in the reverse conversion procedure
at the same time, with one of which hiding the other, is
negligible. Therefore, this solution can be considered as

strictly proving the correctness of automated conversi-
on of control algorithms into the object code of an ap-
plication program provided that the reverse conversion
procedure is performed each time after the code is gene-
rated and loaded.

Conclusion

The authors propose a method for complete verification
of controller programs through reverse engineering. The
method can be used for verifying application programs
of any controller programmed by means of graphical lan-
guages of the IEC 61131-3 standard.

The GET-R1 tools for TPTS include a software com-
ponent that implements this method. Within these tools,
the proposed verification method is used in developing
the application software for the TPTS-SB-based control
safety systems of the Belarusian NPP-2.

To completely guarantee the code correctness, the
TPTS-SB equipment allows for the code loading with a
delayed start, which makes it possible to first load the pro-
gram, then perform the reverse conversion procedure and
only after that start a new program.

The main design solutions for I&C systems of modern
Russian NPPs are presented in (Zverkov 2017, Bozhenkov
2009, Zverkov 2015, Dunaev and Korolev 2011, Zverkov
2014, Yastrebenetsky 2011); the verification methods for
software/hardware complexes of NPP TPTS-based I&C
systems are described in (Korolev et al. 2017, Korolev
et al. 2016); the modern international safety requirements
for software/hardware complexes of NPP are contained
in the IAEA/IEC documents (IAEA SSR-2/1 2012, IEC
61513-2002 2002, IAEA NS-G-1.1 2000)

References
�� Baburin DE (2018) Hierarchical approach for automatic allocation

of acyclic graphs. Available at: http://www.iis.nsk.su/files/articles/
sbor_kas_09_baburin.pdf [Accessed Feb 2, 2018] [In Russian]

�� Belonosov MA, Galitsyn YS, Krayushkin UV, Zhukov IM, Gritsen-
ko SY (2015) The end-to-end engineering tools for instrumentation

Figure 3. Mathematical model graph corresponding to the functional diagram in Fig. 2 The vertices sb.conn.bout correspond to the
input signals of the functional diagram, the vertices sb.conn.bin correspond to the output signals. The remaining vertices correspond
to the functional blocks and have a sequence number.

http://www.iis.nsk.su/files/articles/sbor_kas_09_baburin.pdf
http://www.iis.nsk.su/files/articles/sbor_kas_09_baburin.pdf

Belonosov MA et al.: Verification on application program generation and loading for safety systems...228

and control systems for nuclear power plants. Reports of BSUIR,
2(88): 47–51. [In Russian]

�� Bozhenkov OL (2009) System engineering of the automated pro-
cess control system of NPPs. Yadernye izmeritelno-informacionnye
tehnologii [Nuclear Engineering and Information Technology], 2:
27–30. [In Russian]

�� Yastrebenetsky MA (2011) Control systems and protection of nucle-
ar reactors. Ser. Safety of Nuclear Power Plants. (Ed.) Kiev. Osno-
va-Print Publ., 770 pp. [In Russian]

�� Dunaev VG, Korolev SA (2011) PCS of power units of nuclear power
plants with VVER. In: Nuclear Power. Problems. Solutions. Part 1.
(Ed.) Strikhanov MN. Moscow: TsSPiM Publ.: 315–356. [In Russian]

�� Filatova NN (2012) Structural synthesis of automation schemes in
conditions of incomplete requirements for technical implementation.
Izvestiya VolGTU [Bulletin of VolSTU], 4(13): 17–22. [In Russian]

�� IAEA NS-G-1.1 (2000) The software of control systems, import-
ant for safety, executed on the basis of computer equipment. Safety
Guide. Vienna. IAEA.

�� IAEA SSR-2/1 (2012) Safety of nuclear power plants: design. Spe-
cific safety requirements. Vienna. IAEA.

�� IEC 61513-2002 (2002) Nuclear power plants. Monitoring and con-
trol systems important for safety. General requirements.

�� Korolev S, Tolokonsky А, Rogov V (2017) The optimal approach
for the processes of verification and validation of NPP software and
hardware complexes. Journal of Physics: Conference Series, 781(1):
82–89. https://doi.org/10.1088/1742-6596/781/1/012048

�� Korolev SA, Tolokonsky AO, Rogov VV (2016) Modern methods
of verification of software and hardware complexes of automated
process control systems of nuclear power plants based on TPTS.
Elektricheskie stantsii [Electric Power Plants], 8: 9–15. [In Russian]

�� Miedl H (1996) Retrans – a tool to verify the functional equivalence
of automatically generated source code with its specification. Prob-
abilistic Safety Assessment and Management (PSAM-III). Crete,
Greece: 137–147.

�� Naritz AD, Moiseev MI, Novikov AN, Karpov PS, Borzenko AA
(2015) The complex of automation system TPTS-SB. Reports of
BSUIR, 2(88): 38–42. [In Russian]

�� Spоnemann M, Hanxleden R, Fuhrmann DI (2009) On the automatic
layout of data flow diagrams. Arbeit.

�� Standard IEC61131 (2003) International Electrotechnical Comis-
sion, 3, 226 pp.

�� Tarjan R (1971) Depth-first search and linear graph algorithms. 12th
Annu. Symp. Switch. Autom. Theory (SWAT 1971), 1 (2): 146–160.
https://doi.org/10.1109/SWAT.1971.10 [In Russian]

�� Timohin DS, Gritsenko SYu, Artemyev KP (2015) The structure of
the automated process control system of the Belarusian NPP in terms
of safety. Reports of BSUIR, 2 (88): 28–32. [In Russian]

�� Zverkov VV (2014) Automated control system for technological
processes of NPPs. Moscow. MEPhI Publ., 558 pp. [In Russian]

�� Zverkov VV (2015) Analysis of approaches to the construction of
automated process control systems of NPPs. Elektricheskie stantsii
[Electric Power Plants], 8: 2–6. [In Russian]

�� Zverkov VV (2017) Program-Technical Complexes of Control Sys-
tems for Safety of Nuclear Power Plants. Elektricheskie stantsii, 1:
2–10. [In Russian]

�� Zyubin VE (2005) PLC Programming: IEC 61131-3 languages and
possible alternatives. Promyshlennye ASU i kontrollery [Industrial
ACS and Controllers], 11: 31–35. [In Russian]

https://doi.org/10.1088/1742-6596/781/1/012048
https://doi.org/10.1109/SWAT.1971.10

	Verification on application program generation and loading for safety systems of nuclear power plants based on the reverse engineering method*
	Abstract
	Introduction
	TPTS-SB system architecture and programming principles
	Initial process of developing and loading application programs
	Reverse engineering of a program into graphical or tabular representation
	Advantages in comparison with known solutions
	Conclusion
	References

