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Abstract
The importance of calculation of radiation fields inside in-reactor cavities is associated with the necessity to simulate 
the emergency modes in fast breeder reactors (FBR), as well as reactor states with different coolant levels in special 
dedicated channels of passive feedback devices in lead-cooled fast reactors (LFR) of BREST type or in sodium cavities 
in sodium-cooled fast reactors (SFR).

The Last Flight (LF) method (Bell and Glesston 1974, Davison 1960, DOORS3.2 1988, Mynatt et. al. 1969, Rhoades 
and Childs 1988, Rhoades and Sipmson 1997, SCALE 2009, Voloschenko et. al. 2012), or the method of the unscat-
tered component is widely known and is commonly used in computer codes based on the method of spherical harmon-
ics for obtaining solution in a gas medium at a certain distance from the calculated volume domain (DORT (Rhoades 
and Childs 1988), TORT (Rhoades and Sipmson 1997) and others (SCALE 2009)). The practice of its application 
(DOORS3.2 1988) demonstrated that acceptable results are achievable at considerable distances from the surface sep-
arating dense and gas media (more than two meters). Obtaining high-quality solution is not guaranteed for cavities 
within the calculation area.

In addition, it is desirable to implement the cavities calculation methodology within the framework of the approxima-
tions used in reactor calculations introducing certain specific features. In particular isotropy of the neutron flux density 
and the necessity of forced introduction of a “conditional” calculation cell on the boundary surface of the void cavity 
are assumed in the diffusion approximation. If the LF method is oriented on the connection of the source point with the 
detection point, then it is necessary to determine in the calculation of neutron field in the cavities the neutrons escaping 
the surface area of the source and neutrons reaching a certain surface area of the cavity. In order to solve the problem, 
the authors suggested using the approximate solution presented in the paper.

Thus, an algorithm for calculation of in-reactor cavities using the diffusion approximation was developed and imple-
mented by the authors.
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Introduction
Neutron transport in steady-state conditions in the fast re-
actor core can be described, for instance, in multi-group 
diffusion approximation as follows:
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where Фg(r) is the neutron flux density; Dg(r) is the dif-
fusion factor; Σg

r (r) is the removal cross-section; Σl→g(r) 
is the cross-section of neutron transfer from group l to 
group g; χg is the fission neutron spectrum; νΣg

f (r) is the 
neutron multiplication cross-section; Q(r) is the intensity 
of the external neutron source.

The main advantage of the diffusion approximation for 
practical implementation in computer codes is the high 
speed with which the solution is obtained and low requi-
rements on the availability of computational resources. 
Nevertheless, certain applicability limits exist posed by 
the presence of strongly absorbing medium and pronoun-
ced spatial heterogeneity.

In particular, diffusion approximation is not applicable 
in the presence of gaseous (vacuous) medium. Methods 
for calculating radiation in such media can be based on 
the solution of integral neutron transport equation. If the 
purpose is to define radiation field outside the calculation 
area, then the last flight method (LF) is widely applied. 
However, in practice this method is not easily applicable 
for calculating internal cavities, since uncertainty of the 
method is high at the distances close to the surface. In such 
case volume sources used in LF-method can be replaced 
with surface sources with subsequent numerical integrati-
on over the surface separating dense and gaseous media.

Thus, the purpose of the present study is to create 
combined algorithm with associated calculation module 
converging the diffusion approximation producing fast 
solution with semi-analytical solution of integral equation 
inside in-reactor cavities.

Algorithm for calculating 
unscattered component

Linear integrodifferential neutron transport equation can 
be written in the following integral form:
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Equation (1) means that neutron flux φ(r, Ω, E, t) 
in point r is caused by neutrons which appeared in all 
points r–s′Ω with direction Ω and energy E for all po-
sitive s′. Exponential multiplier here is the attenuation 
factor characterizing the reduction of neutron flux when s 
= 0 is reached, and Σ(r–s′′Ω, E) is the total macroscopic 
cross-section of neutron interaction with medium. Inte-
gration over s′ can be achieved only within the bounda-

ries of the area under examination if incoming neutron 
flux is absent.

We suggest spreading such representation of the soluti-
on only on “vacuous” calculation cells filled with gaseous 
medium where density of the matter is low to such ex-
tent that cross-sections of neutron interactions with me-
dium are very small, so that diffusion factor exceeds by 
several orders of magnitude its values in a typical reactor 
medium, and not allowing using conventional diffusion 
approximation in the medium in question.

As it was indicated in (Davison 1960), when the 
non-zero flux of incoming neutrons is present, it can be 
replaced with equivalent surface source. Such transition is 
possible due to the calculation of neutron flux density on 
the boundary surface between dense and gaseous media.
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where integration is performed over the sur-
face separating dense and gaseous media;  
exp(– Σg|r – r′|)/(4π|r – r′|2) is the probability for neutron 
from r to reach r′ without collisions; φg(r′)dS′ is the field 
from the surface element dS′; φg(r) is the field in r due to 
the field from surface S′. Multi-group energy approxima-
tion to which index g corresponds is used in expression 
(2) and hereafter.

Let us examine transmission of radiation using two-di-
mensional model of hexagonal calculation cell conventi-
onally applied in the FBR calculations as represented in 
Figure 1, then
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where integration is performed along the plane AB; 
φg(r) is the field in point r taking into account radiation 
coming from only the AB plane.

Average value of field on the “receiving” plane ab ta-
king into account (3) and rearrangement of the order of 
integration is as follows:
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In such case the value
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is the contribution in the field on the plane ab made 
only from the field in point r′ located on the plane AB.

Assuming that field on the plane AB is the same for all 
its points, i.e. that φg(r′) = φg

AB, and y – y′=const=Δy in 
accordance with Fig. 1, we obtain: 

� � � �� �
� � � �

2 2

2 2

exp1 .
2

bB

A a

g
xx

g g
ab AB

ab x x

x x y
dx dx

x x x y

��� � � �
�� � �

�� �� � �
� � 	(6)



Nuclear Energy and Technology 4(3): 203–209 205

The obtained integral can be calculated approximately 
and, in case of gaseous medium (Σg ~10–4 cm–1), Taylor 
expansion of the integration term can be used with (6) 
accepting the following form:
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where γ = xB – xa = –xA + xb; δ = xB – xb = –xA + xa; Δ = Δy.
In the simplest case for x – x′ = const = Δx expression 

(6) attains the following form:
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where s is the distance between the points of the 
“emitting” and “accepting” surfaces depending in the 
general case on the angle at which the point on the accep-
ting surface is visible from the point of emitting surface, 
i.e. s = s(α).

Since the problem of radiation transmission in the 
hexagonal cell (see Fig. 1) is symmetrical relative to ver-
tical axis passing through the point S, then the solution (8) 
can be determined only for the length AS, after which the 
obtained value must be doubled for the whole length AB:
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Neutron flux density on the boundary separating the 
media can be determined from the integrodifferential 
neutron transport equation written for the boundary sur-
face, i.e. for the zero-measure volume during integration 

of which all members associated with cell volume will 
disappear and only the flow members, integral for which 
will be converted from volume to surface ones, will re-
main. In such case we obtain equality of flows on the sur-
face separating media
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where φg
i is the neutron flux density on i-th surface 

of the cavity from which neutron can reach the analyzed 
surface s; αis, αsi are the apertures of angles under which 
surface s is seen from the surface i and vice versa; Δis is 
the distance between the surfaces i and s; sj is the distance 
in the dense cell where diffusion approximation works 
with diffusion factor Dj between the center-of-mass point 
with neutron flux density φg

i and the boundary surface 
between the media s; Si, Ss are the surface areas of calcu-
lated cells i and j with shared gaseous medium; φg

s is the 
neutron flux density on the surface s separating media in 
the calculated cell j.

Since integration strongly depends on the cell geome-
try, then let us describe them.

Types of calculation cells with 
voids

There are cells with external steel cladding and central 
cells with coolant and some structures (end fittings of fuel 
rods in reactors of BN type (Saraev et. al. 2010, Oshkanov 
et. al. 2010) or technological pipes, as, for instance, in 
Figure 2) homogenously distributed in it.

While the above mentioned homogenous medium 
fills the channel in the fuel assembly of BN-type reac-
tor in normal operational conditions starting from the 
cells containing absorber to the top of reactor core and 
is substituted with gaseous medium in the case of boi-
ling coolant, then in normal operational conditions of 
BREST-type reactors (Dragunov et. al. 2012) the above 
homogenous medium fills the positive feedback devi-
ces to the reactor core top and gives the place to the 
gaseous medium (argon) when pressure in the lower 
header of the reactor primary cooling loop drops with 
the forward stroke of the gas of 70 cm from the top of 
the core and lower.

Corresponding model of calculation cells and nodes is 
represented in Figure 2: for seven calculation cells there 
are seven main nodes located in the centers of mass of 
the cells and six auxiliary nodes arranged along the in-
ternal boundaries of the cells. If auxiliary nodes along 
the height are added one for each internal boundary of 
internal hexagonal calculation cells, then we obtain se-
ven auxiliary calculation nodes for each altitudinal row 
of the channel.

Figure 1. Model of transmission of radiation in hexagonal cal-
culation cell with internal hexagonal structure (S is the center 
point of the length AB).
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In case of complete coolant drainage from calculati-
on cells of the central channel and their filling with inter 
gas, diffusion factor in such medium varies from unity to 
~100 for positive feedback devices and to ~104 for reac-
tor facilities of BN type. Conventional diffusion approxi-
mation does not provide for the obtaining of acceptable 
result. Auxiliary calculation nodes become determining, 
the problem of obtaining average diffusion factor on the 
boundaries of calculation cells is removed and solution of 
integral neutron transport equation in gaseous medium is 
ensured.

Possible model of the positive feedback device inclu-
des external steel cladding and central steel technological 
pipe between which coolant is located filling the channel 
to the reactor core top in normal operational conditions 
and giving place to gaseous medium (argon) when pres-
sure drops in the lower header of the first reactor cooling 
loop with forward gas stroke of 70 cm from the reactor 
core top and lower (Fig. 3).

Model of calculation cells and nodes in the positive 
feedback device channel is also represented in Figure 3: 
for 13 calculation cells there are 13 main nodes arranged 
in the centers of mass of the cells, and 12 auxiliary nodes 
located on internal boundaries of the cells. If auxiliary 
nodes which are arranged along the height one for each 
internal altitudinal boundary of internal trapezoidal calcu-
lation cells are added to them, then we obtain 18auxiliary 
calculation nodes for each altitudinal row of the channel.

Such layout of arrangement of calculation nodes allows 
using conventional procedure in diffusion approximation 
with filling intermediate calculation cells with coolant 
when auxiliary calculation nodes are actually playing 
supporting role. However, when coolant is drained from 
auxiliary calculation cells calculation nodes on the surfa-
ce separating media play determining role in the solution 
of neutron transport equations in gaseous medium.

Thus, concordance is achieved for the indicated layout 
between the solution of diffusion equation in dense media 
and solution of integral equation in gaseous medium.

Specific models of radiation in calculation cells filled 
with gaseous medium are examined below.

Algorithm of calculation of void in 
hexagonal cell

Let us examine possible situations in the propagation of 
radiation in hexagonal cell with internal hexagonal void.

When hexagonal cell (Fig. 4) is drained, neutrons are 
drifting from surface 1 to surfaces 2 – 6, and arrival of 
neutrons from these surfaces will occur correspondingly.

Values of angles for points А, S, and В are represented 
as аСn, where C is the name of the calculation cell, n is 
the number of the receiving surface. Lengths of sections 
are denominated similarly to (xCn).

When equation (9) is used for calculations, the initial 
section АВ must be divided for improving accuracy, for 
instance, into 10 sections with dimensions equal to АВ/10 
each, which significantly reduces variations of the aspect 
angle and average distance from the points on the secti-
on emitting radiation to the receiving surface. Besides the 
above we assume linear dependence of flight distance on 
the angle under which the point of reception of radiation 
represented in Figure 5 is visible from the point of emissi-
on of radiation (х0, х1, х2 are the distances from the source 
to the receiving side, х0 is the shortest distance; α1, α2 are 
the aspect angles under which receiving sections ab and 
bc are visible from the point of the source).

Layout of propagation of radiation 
in the void between the external 
and internal dense hexagonal 
structures

Let us examine possible situations with propagation of 
radiation in the hexagonal cell with gas void located bet-
ween the external and internal dense media represented in 
hexagonal form.

First let us examine propagation of radiation from the 
internal dense hexagonal structure. For surface 7 with 
flat-to-flat dimension equal to hc in hexagonal cell with 
internal hexagonal cell drift of neutrons will occur to the 

Figure 2. Model of calculation cell with drainable internal hexagonal cell and arrangement of calculation nodes.



Nuclear Energy and Technology 4(3): 203–209 207

surfaces 1, 2, 6 both from the angle, as well as from all 
other, for instance, central points of surface 7, which is 
shown in Fig. 6.

Let us analyze backward radiation from the external 
hexagonal structure to the internal one through gaseous 
medium. For this purpose, we will examine propagation of 
radiation for points of one of the side planes, for instance, 
the first one, depending on the dimensions of the internal 
hexagonal cell with flat-to-flat size hc relative to the dimen-
sions of the external hexagonal cell with flat-to-flat dimen-
sion equal to g. Varying the ratio of parameter hc to g we 
obtain variation of visibility of the sides of the cell under 
examination from points on the side plane 1 (AB). These 
variations are observed on the boundaries of sections with 
the indicated values of the ratio: 2/3g ≤ hc; g/2 ≤ hc < 2/3g; 
g/3 ≤ hc < g/2; g/4 ≤ hc < g/3; g/6 ≤ hc < g/4; hc < g/6.

Propagation of radiation from points of the side pla-
ne AB is presented in Figure 7 for hc < g/6. In this case 
point D becomes visible from point P located somewhere 

between points G и V with AV > AP and half-line РD tou-
ching the angle of internal hexagonal element. Thus, side 
plane 4 becomes visible from points of the section PS in 
the area of interface with side plane 3, and side plane 8 
becomes visible from points of section GS 8.

Point А in Figure 7 is the extreme left point of the side 
plane 1; S is its midpoint; V; G, P are the intermediate points 
between A and S. For the case under examination side planes 
2, 3, 4a, 5, 6, 7 and 12 are visible from points of section AG; 
side planes 2, 3, 4а, 5, 6, 7, 12 and 8 are visible from points 
of section GP; side planes 2, 3, 4a and 4b, 5, 6, 7, 8 and 12 
are visible from points of section PV; side planes 2, 3, 4a and 
4b, 5, 6, 7, 8 and 12 are visible from points of section VS.

Preliminary results of application 
of the algorithm of calculation of 
reactor with voids

Results of comparison of design-basis drainage of 18 
positive feedback devices in the version of design of 
BREST reactor facility obtained using Monte-Carlo me-
thod (Alekseev et. al. 2016, Gurevich et. al. 2016) and the 
above described algorithm are presented in Table 1.

Calculation time for model of BREST-type reactor fa-
cility with model of positive feedback device presented 

Figure 3. Model of calculation cell of the positive feedback device of BREST reactor facility and arrangement of calculation nodes.

Figure 4. Propagation of radiation from points А, S and B of the 
hexagonal cell (AS = AB/2).

Figure 5. Dependence of flight distance on the aspect angle of 
the receiving section.
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in Fig. 3 did not exceed 25 seconds on one computer pro-
cessor core with accuracy equal to 10–6 for neutron flux 
density of multi-group diffusion approximation.

Conclusion
Description is given of the algorithm for calculation in 
diffusion approximation of FBR in the presence of calcu-
lation cells containing voids. The algorithm for solution 
of neutron transport equation in gaseous medium is based 

on the semi-analytical methodology of solution of Peierls 
integral equation in the assumption that calculation cells 
with gaseous medium are surrounded by calculation cells 
in which diffusion approximation is used, which allows 
keeping high speed of obtaining the solution with high 
enough accuracy of this solution. No information about 
earlier application of such algorithm in international cal-
culation practice is known to authors.

Preliminary results of application of the suggested al-
gorithm are of high enough quality with high speed of ob-
taining the solution. As it was originally expected, direct 
application of diffusion approximation produces solution 
with accuracy which is not acceptable.

The developed algorithm for calculation in diffusion 
approximation of fast breeder reactor with presence of 
calculation cells with voids can be used for estimation 
of sodium void reactivity effect (Poplavsky et. al. 2010) 
for any reactor facility equipped with FBR, as well as for 
estimation of behavior of neutron field in FBR with disin-
tegrating core in the analysis of postulated accidents for 
assessment of safety of the specific reactor facility.
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