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Abstract
The WWR-c reactor reactivity margin can be calculated using a precision reactor model. The precision model based on 
the Monte Carlo method (Kolesov et al. 2011) is not well suited for operational calculations. The article describes the 
work on creating a software package for preliminary evaluations of the WWR-c reactor reactivity margin.

The research has confirmed the possibility of using an artificial neural network to approximate the reactivity margin 
based on the reactor core condition. Computational experiments were conducted on training the artificial neural net-
work using the precision model data and real reactor measured data. According to the results of the computational 
experiments, the maximum relative approximation error ∆k/k for fuel burnup was 3.13 and 3.56%, respectively. The 
mean computation time was 100 ms. 

The computational experiments showed it possible to construct the artificial neural network architecture. This architec-
ture became the basis for building a software package for evaluating the WWR-c reactor reactivity margin – REST API 
based web-application – which has a convenient user interface for entering the core configuration. It is also possible to 
replenish the training sample with new measurements and train the artificial neuron network once again.

The reactivity margin evaluation software is ready to be tested by the WWR-c reactor personnel and to be used as a 
component of the automated reactor refueling system. With minor modifications, the software package can be used for 
reactors of other types.
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Problem definition 
A WWR-c experimental nuclear facility (heterogeneous 
water-water research reactor) has been in operation since 
1964 at the branch of the L.Ya. Karpov Institute of Physi-
cal Chemistry (NIFHI) near the town of Obninsk, Kaluga 

region. The reactor is specialized for a wide range of re-
search works in the field of radiation chemistry, structural 
and material research, activation analysis, neutron trans-
mutation doping of semiconductors, etc. (Kochnov et al. 
2008). In 1980, the Institute began to produce reactor-ba-
sed medical radionuclides and radiopharmaceuticals. In 
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1986, due to the successful development of this area and 
its convenient geographical location, it was decided to re-
construct the reactor (Kolesov et al. 2011).

In 2011, the need to improve the reactor parameters 
and increase the efficiency of radionuclide (99Мо, 131I, 
etc.) production necessitated creating a precision neu-
tron-physical calculation model of the reactor core, re-
flector and CPS bodies. Modeling took into complete 
account the geometry of all fuel rods (fuel, cladding, wa-
ter gap with appropriate temperatures), the fuel isotopic 
composition changes depending on burnout, the geometry 
and composition of CPS bodies, reflectors, experimental 
channels, and structures. The obtained precision model 
was verified for reactor reactivity margin calculations 
(Kolesov et al. 2011).

The model is based on the Monte Carlo method, which 
makes it possible to achieve high accuracy in modeling 
the reactor core physical processes. However, this ap-
proach requires a large amount of computer time to con-
duct computational experiments; for example, it takes 
about eight hours to calculate the reactivity margin for 
one core configuration. 

The WWR-c reactor campaign is 100 hours per week 
with subsequent shutdown for cooling down, fuel/target 
reloading and other technological operations (Kochnov et 
al. 2014). Due to such a short campaign, it is rather diffi-
cult to use a precision model for carrying out operational 
calculations: With a single computing system being fully 
utilized, no more than 12 calculations can be made during 
one campaign. Thus, there appears a task to create a soft-
ware package for evaluating the WWR-c reactor reactivi-
ty margin. This software package should assist the reactor 
R & D personnel in carrying out preliminary calculations 
of the reactivity margin. The main requirement for this 
software is to increase manifold the computational per-
formance while maintaining a sufficient level of accuracy. 
The main task of the software package is to approximate 
the reactor reactivity margin depending on the fuel bur-
nout and the position of the CPS bodies.

Using artificial neural networks to 
approximate the reactivity margin

In general, artificial neural networks (ANN) denote an 
approach to the construction of computational algorithms 
and devices based on their similarity to biological neu-
rons (Simon Haykin 1999). In this work, artificial neural 
networks are considered as a family of information pro-
cessing algorithms.

An artificial (formal) neuron is an elementary compu-
tational cell of an artificial neural network. Each artificial 
neuron receives a vector of input signals x = (x0, x1, …, 
xn), for which a weighted sum is calculated. Then, the ac-
tivation function value (ϕ) is calculated from this weigh-
ted sum:
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where w is the weight vector and b is the offset.
A set of artificial neurons that receive a single vector 

of input signals is called a fully connected neural layer. A 
sequence of neural layers, in which the vector of output 
signals of the previous layer is the input vector of the next 
layer, is called a multilayer perceptron.

All weights in a multilayer perceptron are initialized 
by random small values. In this configuration, the percep-
tron produces noise in response to any input vector. To 
configure the perceptron to perform a given function, ite-
rative training is performed. The training process consists 
in presenting a vector from the training data set to the 
neural network input, obtaining the result at the neural 
network output, comparing the output with the expected 
one, and adjusting the weights to reduce the difference 
obtained. One of the most frequently used training algo-
rithms is gradient descent (Filatova 2004). 

Let us justify the possibility of using an artificial neural 
network to construct an approximation. Approximations 
can be constructed using a generalized approximation 
theorem. According to this theorem, it is possible to ob-
tain an arbitrarily accurate approximation of any conti-
nuous multivariable function using the operations of ad-
dition and multiplication by a number, superposition of 
functions, linear functions, and one arbitrary continuous 
non-linear one-variable function (Gorban 1998). Since 
these operations are fully implemented by an artificial 
neural network with one non-linear formal neuron, it is 
permissible to use an artificial neural network to construct 
the required approximation.

To confirm the possibility of approximating the reac-
tivity margin using an ANN, two computational experi-
ments were carried out. In the first experiment, an arti-
ficial neural network was trained on the data calculated 
using a precision model. In the second experiment, an 
artificial neural network was trained using real data from 
the WWR-c reactor campaigns.

Model data approximation 

To conduct an experiment on the model data approximati-
on by an artificial neural network, a data set was construc-
ted. Using a precision model, computational experiments 
were carried out for 34 different reactor configurations 
(fuel assembly burnup, CPS position) and a reactivity 
margin value was obtained for each configuration. Based 
on the obtained data, a training data set (25 configurati-
ons) and a test dataset (9 configurations) were formed. 
For the final verification, all 34 core configurations were 
used.
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For the experiment, a three-layer artificial neural net-
work was created. The input layer consists of 50 formal 
neurons with the ReLu activation function:

0,         0;( ) ,        0.
xf x x x

The hidden layer consists of 10 formal neurons with 
the ReLu activation function. The output layer consists 
of one formal neuron with the logistic activation function

f(x) = (1 + e–x)–1.

For training the artificial neural network, 50,000 trai-
ning epochs were conducted. Training was based on the 
back-propagation mean square error (MSE) for the trai-
ning data set. Every 100 epochs, the mean square error 
was evaluated on the test data set. Throughout the training 
process, the error reduced to zero without divergence.

After the training process was completed, the ANN was 
verified on the model data. Figure 1 shows the complete 
results of the comparison of precision reactivity margin 
calculations with the results of the ANN work. The verifi-
cation results are generalized as follows:
– 	 the mean absolute approximation error = 0.0405;
–	 the maximum absolute approximation error = 

0.1029;
–	 the mean relative approximation error = 1.21%;
–	 the maximum relative approximation error = 

3.13%;
The average time required to calculate the reactivity 

margin using the artificial neural network is 100 ms (Be-
lyavtsev et al. 2018).

Measured data approximation 

To conduct the experiment on the measured data approxi-
mation, data from 24 real reactor campaigns were taken. 

The data were divided into two sets: a training data set (18 
campaigns) and a test data set (6 campaigns). To validate 
the trained ANN, data from all 24 campaigns were used.

The ANN architecture is identical to the architecture 
in the first experiment. For training the ANN, 50,000 trai-
ning epochs were conducted.  Training was also based on 
the back-propagation mean square error for the training 
sample. Every 100 epochs, the mean square error was 
evaluated on the test data set. Throughout the training 
process, the error reduced to zero without divergence.

After the training process was completed, the ANN 
was validated on the measured data. Figure 2 shows the 
complete results of the comparison of measured reactivity 
margin values with the results of the ANN work. The va-
lidation results are generalized as follows:
–	 the mean absolute approximation error = 0.0412;
–	 the maximum absolute approximation error = 

0.1159;
–	 the mean relative approximation error = 1.26%;
–	 the maximum relative approximation error = 

3.56%;
The average time required to calculate the reactivity 

margin using the artificial neural network is 100 ms.
The described computational experiments showed that 

the obtained neural networks implement a correct ap-
proximation and have high accuracy and operating speed 
(Belyavtsev et al. 2018).

Critically margin evaluation 
software for WWR-c reactor

Based on a finite number of precision calculations or 
changes, and using an artificial neural network, it became 
possible to implement the procedure for approximating 
evaluations of the WWR-c reactor reactivity margin in a 
software package. For reactor core configurations within 

Figure 1. Performance verification graph of an artificial neural network trained on model data (measurement numbers in the varia-
tional sample are plotted on the abscissa; the reactivity margin values, % ∆k/k, are laid of on the ordinate)
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the training sample, a quick and fairly accurate evaluation 
of the reactivity margin can be obtained. 

The next step is to ensure the possibility of using arti-
ficial neural networks for preliminary reactivity margin 
calculations. To solve this problem, it was necessary to 
create a software package for evaluating the WWR-c re-
actor reactivity margin.

This software package must meet the following requi-
rements:
–	 to replenish the training sample for an artificial 

neural network;
–	 to work in training modes and use a trained neural 

network;
–	 to have a user-friendly and intuitively comprehen-

sible interface;
–	 to be easy-to-install and easy-to-use.

The developed software package consists of the follo-
wing structural elements:
–	 artificial neural network;
–	 training data storage;
–	 REST API for data exchange;
–	 user interface.

Let us consider these elements.
The basic component for creating an artificial neural 

network is the TensorFlow framework (Abadi et al. 2015, 
Zaccone 2016, Lieder et al. 2017), which builds and exe-
cutes a graph of computations in heterogeneous computing 
systems, has a rich library of primitives for constructing 
artificial neural networks, and ensures the effective use of 
available computing environments.

The DNNRegressor primitive from the TensorFlow li-
brary was used to create an artificial neural network. The 
network input layer contains 50 formal neurons with the 
ReLu activation function, the hidden layer is composed 
of 10 formal neurons with the ReLu activation functions, 

and the output layer is one formal neuron with the logistic 
activation function. Thus, this structure completely re-
peats the network architecture used in the computational 
experiments.

The DNNRegressor primitive can function in training, 
evaluating, and predicting modes.

The DNNRegressor uses training and evaluating mo-
des to train and predicting mode to use the ANN. The 
pre-trained DNNRegressor primitive is stored in a tf.data 
file, which contains a description of the prediction graph 
(Inference) and all the weights of the formal neurons.

Comma-Separated Values (CSV) files are used to sto-
re training data. Each entry is a string with sequential-
ly recorded burnout percentages of each fuel assembly, 
CPS positions, and reactivity margin values for given 
core configurations. For the training procedure, data from 
CSV files are brought into memory in the form of NumPy 
arrays.

To ensure interaction with users, a web-based control 
interface (You 2018, Filipova 2016, Street 2017) was 
implemented using the VueJs library: this interface is a 
simplified reactor map. It is possible to specify the bur-
nout percentage for each fuel assembly and the position 
for each CPS body (see Fig. 3). Depending on the selected 
operating mode, the reactor criticality in a given configu-
ration will be estimated or another value will be added to 
the training set. To provide communication between the 
software parts, using the Flask library (Ronacher 2018, 
Grinberg 2018, Dwyer 2016), a representational state 
transfer (REST) application programming interface was 
implemented (Masse 2011, Richardson and Ruby 2008).

Conclusions and prospects 

Figure 2. Performance validation graph of an artificial neural network trained on measured data (measurement numbers in the vari-
ational sample are plotted on the abscissa; the reactivity margin values, % ∆k/k, are laid of on the ordinate)
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The authors considered the possibility of approximating 
the reactor reactivity margin using a fully connected ar-
tificial neural network as preliminary evaluation; two 
artificial neural networks were trained on different data 
sets (on the model data obtained using a precision reactor 
model and on the measured data of real campaigns). It is 
shown that both approximations have sufficient accuracy 
for carrying out preliminary calculations of the reactivi-
ty margin. According to the results of the computational 
experiments, the maximum relative approximation error 
was 3.13 and 3.56%, respectively.

Based on the trained artificial neural networks, a soft-
ware complex for evaluating the WWR-c reactor reacti-
vity margin was created. This software package makes it 
possible in a convenient and visual manner to obtain the 
reactivity margin value predicted by the neural network 
as well as to replenish the training sample with new data.

The package is ready to be tested by the personnel of 
the WWR-c reactor. In parallel with testing, a number of 
changes can be made to this software package to incre-
ase the convenience and safety of operation, for example: 
data encryption in the training sample; authorization, au-
thentication and accounting of users; manual editing of 
the training set.

This software package is proposed to be used as a com-
ponent of the automated reactor refueling system. With 
minor modifications, the software package can be used 
for reactors of other types.
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Figure 3. The interface of the software package for evaluating 
the reactivity margin 
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