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Abstract
We demonstrate how the therapeutic utility index and the ballistic index for dynamical neutron cancer therapy (NCT) 
with two opposing neutron beams form a nonlinear optimization problem. In this problem, the modulation frequencies 
ω and ϖ of the beams and the relative time advance ε are the control variables. A Pareto optimal control vector ω* = 
(ω*, ϖ*, ε*) for this problem is identified and reported for the first time. The utility index is shown to be remarkably 
periodically discontinuous in ε, even in the neighborhood of ε*.

Keywords
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Introduction

In both dynamical and/or stationary (B/Gd) neutron can-
cer therapy (NCT), there is always an unavoidable un-
desirable effect of irradiating some surrounding healthy 
tissues together with a targeted, B/Gd-loaded, see e.g. 
(Hosmane 2012), cancerous tumor, R. The ballistic in-
dex of neutrons, to be maximized in a NCT (in order to 
minimize this undesirable effect) is the ratio of the (B/
Gd) reaction rate inside R, to the total neutronic reacti-
on rate inside the patient. This index was advanced by 
this author in (Haidar 2002, 2018), then tailored to the 
therapeutic setup of two opposing dynamical one-speed 
neutron beams in (Haidar 2017). Furthermore, in dynami-
cal NCT, the neutron density distribution inside R is de-
composable, (Haidar 2017, 2018), into three components: 

dissipative (associated with the useful dynamical reaction 
rate), periodic and stationary. Here the ratio of the dissi-
pative-to-periodic neutron density wave, as a measure of 
the utility of time of the used modulated accelerators, was 
also developed by this author in (Haidar 2017, 2018), as 
another therapeutic index.

A standard technique conventionally used for boosting 
the ballistic index in stationary NCT is to irradiate the 
tumor several times with beams coming from different 
directions via rotating gantries (Smirnov and Vorozhts-
ov 2016, Yoshida et al. 1976), or via rotating the patient 
himself. Nowadays, we already have operating compact 
superconducting medical cyclotrons that may rotate 
around the patient like e.g. the one in the Harper Hospi-
tal in Detroit USA. The entire structure of this cyclotron 
weighs less than 25 tons and this allowed the cyclotron to 
be mounted directly on a rotating gantry so that neutrons 
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produced by any internal charged particle target can be di-
rected at a supine patient from any desired direction. Me-
dical accelerators are steadily becoming more compact 
and more flexibly temporally controllable (Yoshida et al. 
1976), and it may not be unrealistic to conceive an NCT 
facility housing two accelerators, or two time-modulated 
neutron beams, that are directed by gantries towards a 
cancer patient. Alternatively, external-beam pulsing sys-
tems (Haidar 2002, Alvarez-Estrada and Calvo 2004), 
may also be employed for the same purpose.

It should be underlined, from the outset of this paper, 
that the diffusion model for neutron transport near boun-
daries of strongly absorbing R regions can only serve as 
a rudimentary approximation, see e.g. (Henry 1975), and 
a one-speed diffusion model makes the situation worse. It 
is also known that the multigroup transport operator is a 
much more difficult operator to handle analytically than 
the one-speed diffusion operator, particularly with time 
evolution applications, as in the present work.

In the therapeutic setup for dynamical (B/Gd) NCT by 
one, (Haidar 2018), or two, (Haidar 2017), opposing neu-
tron beams, the state diffusion equation is linear in the 
neutron flux solution f(x,t) of the parabolic boundary va-
lue problem (BVP), (Haidar 2017), of one-speed neutron 
diffusion. The above pertaining two objective functions 
: therapeutic utility index ῆ(ω, ϖ, ε) and ballistic index 
ᾶ(ω, ϖ, ε) for a cancerous slab R of parameters {Σa, D, l} 
turn out to be nonlinear functions of the components of 
the control vector ω = (ω, ϖ, ε). In the set of parameters, 
Σa is the macroscopic one-speed neutron absorption cross 
section, D is the diffusion length for these neutrons, see 
e.g. (Henry 1975, Haidar 1985), a is the thickness of the 
cancerous slab and l is its extrapolated end, as illustrated 
in Figure 1. The closed analytical solvability of the per-
taining BVP happens to lead to differentiable objective 
functions within the following nonlinear programming 
problem:

 .	 (1)

The first nonlinear inequality constraint G1(ω) = ε < 
2π/ ω means that the time advance should not exceed the 
period of the modulated reference neutron beam, other-
wise if ε = k(2π/T0) , k = 1, 2, 3, ... it becomes redundant. 
In this multi-objective (Pareto) optimization (M’silti and 
Tolla 1993) problem, the affine two-sided second ine-
quality constraint, in which T0 is the life time of thermal 
neutrons in R, is the same as the system of three affine 
inequality constraints

G2(ω) = ϖ < 2π/ T0.
G3(ω) = ω – ϖ ≤ 0
G4(ω) = – ω < 0.	 (2)

It is well known that if it happens that the objective 
functions are conflicting, i.e. if ῆ(ω) cannot be improved, 
by varying ω, without degrading the value of ᾶ(ω), then 
the problem becomes entirely unsolvable. Otherwise, if 
ῆ(ω) and ᾶ(ω) are not conflicting, then the problem may 
accept Pareto optimal, see e.g. (M’silti and Tolla 1993, 
Miettinen 1998), solutions pending to satisfaction of the 
inequality constrains (2). Demonstrating that this what ac-
tually happens, is the purpose of this note.

Pareto optimization

To have a look at the posing problem from a different 
angle, we note that the results of (Haidar 2018) indica-
te that problem (1) can always be replaced (or cast into) 
the following analytically closed equivalent system of 10 
nonlinear and linear equations:

	(3)

with 6 control variables. Here σ = (σ1, σ2, σ3, σ4) is a vec-
tor of slack variables, see e.g. (Sundaram 1996), neces-
sary to transform the inequality G constraints to equality 
Q constraints.

Problem (3) is clearly overdefined and may, in general 
be unsolvable, unless when at least four of the above 10 
equations happen to be inactive ( or insignificant). Luc-
kily this turns out to take place for the posing therapeutic 
setup, as to be demonstrated in the result that follows.

In addition to the notation of (Haidar 2018, Haidar 
2017), namely: f(x,t) = vg(x,t), with v as the neutron speed 
and g(x,t) is the pertaining neutron density, åm = ℵR;Λam, 

Figure 1. Sketch to illustrate the two opposing neutron beams 
in a dynamical (B/Gd) NCT setup; with xα and zα as the entrance 
points for fast neutrons to moderators and xβ and zβ are exit 
points for thermal neutrons from moderators.
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b~m = ℵR;Πbm, m = 0,1,2,3, ... with am = am(S(t),ω) and 
bm = bm(Ş(t),ϖ) are Fourier coefficients for the modula-
ted two opposing neutron beams, with respective P and Ϸ 
periods and respective beam source periodic shapes S(t) 
and Ş(t), acting on an Λ ∪ R ∪ Π composite, as illustrated 
in Fig. 1, and ℵR;Λ and ℵR;Π are coupling factors (Haidar 
2017, 2018) between the R region and the respective ad-
jacent Λ and Π tumor-free regions,

we shall also need: (β)+ = β + δβ , where δβ is an infinite-
simal positive increment of β.

Proposition 1.

A Pareto optimal control vector for the therapeutic optimi-
zation problem (1–2) is: ω* = (ω* = ϖ* = 2π/T0, ε

* = (T0/2)+).
Proof. As usual in Pareto optimization, see e.g. (Sun-

daram 1996, Miettinen 1998), the arguments we shall ap-
ply to the analysis of (1), are basically of graphical qua-
litative nature.

Step 1. Let us analyze qualitatively, first as a function 
of ϖ, the therapeutic utility index

,	(4)

in which,

,

and all the symbols have their usual meaning, as in (70) 
of (Haidar 2018).

The basic modal ϖ – factor in the numerator of (4) is

,

in which 

is a bell-shaped convex function of ϖ, which is peaked 
at ϖ = 0 with a negative peak height of –(1/βn) and peak 

width ~ (1/m4) . A peak height that diminishes with incre-
asing n. Hence most significant term in the double sum-
mation 

is M̂11 (ϖ, ε). 
Consequently, as a sum (or difference, due to the sign 

pattern of cos(2n–1)π/4) of equicentral bell shapes,

should be convex with a minimum at ϖ = 0 and stationa-
rizing (with maxima) at ϖ  ± ∞. The numerator of (4), 
with 

conceived as a constant independent of ϖ, retains the con-
vexity property of ϖ, retains the convexity property of

As for the basic modal ϖ – factor in the denominator of 
(4), which is

the term
 

is another bell-shaped, flatter than 

,

but concave function of ϖ, which is peaked at ϖ = 0 with 
a positive peak height of 1/βn .Then taking into conside-
ration that

 i.e. sin[Ωmn(ϖ, ε)] ≈ 1,

it can be argued that Ņmn(ϖ, ε) remains concave ∀ϖ ∈ (-∞; 
∞). Hence the most significant term in the double summation
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is Ņ11(ϖ, ε). Consequently, as a sum (or difference, due to 
cos(2n–1)π/4) of equicentral bell shapes, 

should be concave with a maximum at ϖ = 0 and statio-
narizing (with minima) at ϖ  ± ∞. The denominator of 
(4), with

conceived as a constant independent of ϖ, retains the con-
cavity property of 

Hence ῆ(ω, ϖ, ε), as a function of ϖ, being a con-
vex-to-concave ratio of concentric functions should be 
convex with a minimum at ϖ = 0 and stationarizing (with 
maxima) at ϖ  ± ∞.

Second we consider (4), as a function of ω. Repeating 
essentially the same analysis on the basic modal ω – fac-
tor in the numerator of (4) :

, 

leads to a conclusion that 
 

should be convex with a minimum at ω = 0 and stationa-
rizing (maxima) at ω  ± ∞. The numerator of (4), with 

conceived as a constant independent of ω retains the con-
vexity property of 

.

As for the basic modal ω – factor in the denominator 
of (4), which is

the term 

is another bell-shaped, flatter than

, 

but concave function of ω which is peaked at ω = 0 with 
a positive peak height of 1/βn. Then taking into conside-
ration that

,

indicates that Nmn(ω) remains concave ∀ ω ∈ [0, ∞]. Also 
here the most significant term in the double summationis 

 is N11(ω).

Then we observe that the denominator of (4), with 

conceived as a constant independent of ω, retains the con-
cavity property of

.

Hence ῆ(ω, ϖ, ε), as a function of ω, being a con-
vex-to-concave ratio of concentric functions should be 
convex with a minimum at ω = 0 and stationarizing (with 
maxima) as ω  ± ∞.

Third, we consider (4) as a function of ε. The basic mo-
dal ε – factor in the numerator of (4) is M̂mn (ϖ, ε) in which 
–e–βnε is concave with a maximum attained at ε  ∞. As 
a sum (or difference, due to the sign pattern of cos(2n–1)
π/4) of such aligned concave functions, where M̂11 (ϖ, ε) 
as the most significant term, 

should be concave with maximum attained at ε  ∞. The 
numerator of (4), with 

conceived as a constant independent of ε, retains the con-
cavity property of 

.
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Quite distinctively, the basic modal ε – factor in the 
denominator of (4), which is Ņmn(ϖ, ε) happens to contain 
the term

, 
ϖ  ± ∞,	 (5)

which is almost periodic in ε. The double summation 

represents a half-range expansion of a certain periodic 
function F(ε) in sinusoidal Fourier series. The period of 
this F(ε) is 2π/ϖ.

The denominator of (4) is simply this periodic function 
added to a constant ( independent of ε) term:

.

Now ῆ(ω, ϖ, ε), as a function of ε, being a concave-to-pe-
riodic ratio of functions should be concave with a global 
maximum attained at ε  ∞, but periodically disconti-
nuous, each half-period π/ϖ of F(ε). So, if εk is the k-th 
discontinuity of ῆ(ω, ϖ, ε), then 

εk = k (π/ϖ), k = 1, 2, 3, ... 
with

ῆ(ω, ϖ, εk) < ῆ(ω, ϖ, εk+1), ∀k 	 (6)

Step 2. Then we apply the same analysis for the bal-
listic index

 ,  (7)

of (74), in (Haidar 2018), first as a function of ϖ.
The basic modal ϖ – factor in the numerator of (7) is

 ,

with

in which

is a bell-shaped convex function of ϖ which is peaked 
at ϖ = 0 with a negative peak height of –(1/βn). A peak 
height that diminishes with increasing n, and the most sig-
nificant term in the double summation 

 being Â11(ϖ, ε).

Consequently, as a sum (or difference, due to the sign pat-
tern (–1)n–1) of equicentral bell shapes, 

should be convex with a minimum at ϖ = 0 and stationa-
rizing (maxima) at ϖ  ± ∞. The numerator of (4), with 

conceived as a constant independent of ϖ, retains the con-
vexity property of 

 .

Also the basic modal ϖ – factor in the denominator of 
(7),

has the same convex behavior as Âmn(ϖ, ε), while distinc-
tively increasing with increasing n. Also convex are 

and 

,

with a minimum at ϖ = 0 and stationarizing (maxima) at 
ϖ  ± ∞.

Then the denominator of (7), with 

conceived as a constant independent of ϖ, retains the con-
vexity property of 

 .

Hence ᾶ(ω, ϖ, ε), as a function of ϖ, being a convex-to-con-
vex ratio of concentric functions should be a rather flatte-
ned convex (or quasi-convex) function with a minimum at 
ϖ = 0 and stationarizing (with maxima) at ϖ  ± ∞.

Second, we consider (7), as a function of ω. Repeating 
essentially the same arguments to the basic modal ω – 
factors in the numerator and denominator of (7), which 
are respectively

 ,
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and

 ,

leads to the conclusion that ᾶ(ω, ϖ, ε), as a function of 
ω,being a convex to convex ratio of concentric functions, 
should also be a rather flattened convex (or quasi-con-
vex) function with a minimum at ω = 0 and stationarizing 
(with maxima) at ω  ± ∞.

Third, we consider (7) for ᾶ as a function of ε. The 
basic modal ε – factor in the numerator of (7) is Âmn(ϖ, ε), 
in which –e–βnε is concave with a maximum attained at ε 
 ∞. As a sum (or difference, due to the sign pattern (–1)
n–1) of such aligned concave functions, where Â11(ϖ, ε) is 
the most significant term,

should be concave with maximum attained at ε  ∞.The 
numerator of (7), with 

conceived as a constant independent of ε, retains the con-
cavity property of 

.

Quite distinctively, the basic modal ε – factor in the 
denominator of (7), which is B̂mn(ϖ, ε) contains the term 
–e–βnε which is concave with a maximum attained at ε  
∞. As a sum (or difference, due to (–1)n–1) of such aligned 
concave functions, where B̂11(ϖ, ε) as the most significant 
term, 

and

should be concave with maximum attained at ε  ∞.The 
denominator of (7), with 

conceived as a constant independent of ε, retains the con-
cavity property of 

.

Obviously ᾶ(ω, ϖ, ε), as a function of ε, being a concave 
to concave ratio of aligned functions, should also be a ra-
ther flattened concave (or quasi-concave) function with a 
minimum near ε = 0 and quickly attained (maximum) at ε 
> 0 and towards ε  ± ∞.

Step 3. The previous analysis indicates that maximi-
zation of ῆ(ϖ) and ᾶ(ϖ) occurs asymptotically as ϖ  ∞, 
but by the constraint 0 << ω < ϖ ≤ 2π/T0, ϖ should not 
exceed 2π/T0, i.e. ϖ* = 2π/T0, Pareto optimal. Also since 
both ῆ(ω) and ᾶ(ω) maximize asymptotically as ω  ∞ 
and ω << ϖ, then ω* = ϖ*, Pareto optimal.

The situation with ε is remarkably quite different. While 
ᾶ(ε) attains a stationarizing maximum quickly with increasing 
ε > 0, ῆ(ε) is concave with a global maximum attained at ε  
∞, but is periodically discontinuous at εk = k(π/ϖ), k = 1,2,3, 
... . Moreover since ε < (2π/ω), then ε* = ε1 ≈ π/ϖ* = T0/2. Ho-
wever, by structure of F(ε), the limit to the right of the εk dis-
continuity should correspond to a local maximum of ῆ(ε). For 
that reason ε* = (T0/2)+, Pareto optimal. Here the proof ends.

From the previous proof, it is clear how the sensitivi-
ties of ῆ and ᾶ to variations either in ϖ and/or ω are quite 
similar. The sensitivities of ῆ(ε) and ᾶ(ε) to variations in ε 
are, however, remarkably very different.

Remark 1. 

In some cancer patients, transport of thermal neutrons by 
neutron guides or neutron optical fibers through the re-
gions Λ and Π (with respective thicknesses lΛ and lΠ and 
neutron macroscopic removal cross sections ΣΛ and ΣΠ), 
may turn out to be medically unfeasible. As an approxi-
mate substitute to solving the composite Λ ∪ R ∪ Π regi-
onal neutronics problem in this case, one can simply as-
sume a planar attenuation, towards R, of the sources S(x,t) 
and Ş(x,t) respectively to

and	

.	 (8)

As a result, the entire analysis, reported in this note, holds 
true if we replace each åm and b~m respectively with

 .	 (9)

Conclusion

In this note, we have demonstrated that the therapeutic 
indices in NCT, with two opposing neutron beams, are 
controllable in a Pareto optimization process. The exis-
tence of a Pareto optimal control vector

is proved, for any given pair {S(t), Ş(t)} of beam source 
shape functions.



Nuclear Energy and Technology 5(1): 1–7 7

These facts pave the way towards launching the buil-
ding of the first experimental benchmark for this new kind 
of NCT, on which, e.g. the impact of changes in the set 
{S(t), Ş(t)} on ω*, can further be investigated.
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